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Abstract. Plateau characteristics are a special type of characteristics whose probability de-

pends on the key and can have only 2 values. For a (usually small) subset of the keys it has a

non-zero probability and for all other keys its probability is zero. In this paper we prove that for

a large group of ciphers, including the AES, all two-round characteristics are plateau character-

istics. For the AES and other ciphers with a similar structure we show that the vast majority

of characteristics over 4 or more rounds are plateau characteristics. In the case of the AES, for

most keys there are two-round characteristics with fixed-key probability equal to 32/232 while

the Maximum Expected Differential Probability (MEDP) of two-round differentials is at most

13.25/232 .
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1 Introduction

In this paper we study the probability of characteristics [6] over (reduced-round versions of)

block ciphers, where the difference is the bitwise XOR, and apply our results to the AES and

a simplified variant.

It has been reported before that the fixed-key probability of characteristics depends on

the value of the key [5, 7, 3]. We define plateau characteristics, where the dependency on the

value of the key is very structured. The fixed-key probability of these characteristics is either

zero, or 2h, with h a value that depends only on the characteristic and not on the key. We

show that for a large class of ciphers, all two-round characteristics and a fraction of the more-

round characteristics are plateau characteristics. This fraction is very close to 100% for the

AES and for other ciphers with a diffusion mapping based on Maximum Distance Separable

(MDS) codes and with S-boxes that have ‘2’ or ‘4’ as maximal entries in their XOR-tables

(4-uniform S-boxes).



Our results don’t affect the MEDP of characteristics, but show that the distribution of

the key-dependent probability is not narrow and hence the widely made assumption that it

can be approximated by the EDP, is not justified.

Applying our results to the AES, we see that for almost all values of the key there are

two-round characteristics with a fixed-key probability equal to 32/232, while the MEDP of

two-round characteristics is at most 4/232 [12] and the MEDP of two-round differentials [17]

is at most 13.25/232 [14, 23, 24].

After introducing some basic definitions in Section 2 and presenting our motivation for this

work in Section 3, Section 4 introduces plateau characteristics over two rounds. Characteristics

over more than two rounds are studied in Section 5. We present some further observations in

Section 6. We analyze the key-dependent probability of all two-round characteristics over the

AES in Section 7. We discuss more-round characteristics over the AES in Section 8 and the

impact on differentials in Section 9. We conclude in Section 10.

2 Definitions

We denote a differential [17] over a map by (a, b) and assume that it is clear from the context

which map we mean. We call a the input difference and b the output difference. The probability

of a differential is denoted by DP(a, b). For a keyed map, we can define a differential probability

DP[k](a, b) for each value k of the key. We define the expected differential probability (EDP)

of a differential as the average of the differential probability DP(a, b) over all keys.

A composed function consists of a sequence of maps, called steps. A characteristic through

a composed function is a sequence of differences a, b, . . . . The sequence consists of an input

difference a, followed by the output differences of all the steps of the composed function. A

characteristic over a keyed composed map has a differential probability DP[k](Q) for each

value k of the key. The EDP of a characteristic is the average of its DP[k] over all keys. In

this paper, we only consider characteristics with EDP > 0.
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Definition 1 ([12]). The weight of a differential or a characteristic is minus the binary

logarithm of their EDP.

weight(a, b) = − log2 EDP(a, b), weight(Q) = − log2 EDP(Q) .

3 Motivation

An important example of composed maps is formed by block ciphers. Modern block ciphers are

designed to resist differential cryptanalysis. Often they come with provable bounds on EDP

values of either characteristics [12] or differentials [22, 20]. For older ciphers like the DES,

the EDP of a differential can be estimated by the EDP of one characteristic, the dominating

characteristic [6]. For many modern block ciphers, there are no dominating characteristics,

and this estimate can no longer be used. It is also tempting to invoke the

Hypothesis 1 (Hypothesis of Stochastic Equivalence [17]) For all differentials (a, b),

it holds that for most values of the key k, DP[k](a, b) ≈ EDP(a, b).

The main use of the Hypothesis of Stochastic Equivalence is that it allows one to construct

proofs of security. The proofs give bounds on the expected data complexity of differential

attacks where the attacker uses exactly one differential. The hypothesis has been observed to

hold in toy ciphers [16], but not in ciphers that are used in practice, for instance DES [7, 15]

and IDEA [9]. In any case, the hypothesis can’t be applied to the probability of characteristics.

While DP[k] of a characteristic is always a multiple of 21−nb , with nb the input size of the

map, the EDP of a characteristic can take much smaller values.

When we examine the resistance of the AES and related ciphers against differential crypt-

analysis, the Hypothesis of Stochastic Equivalence is of little use. For instance, for character-

istics over 4 or more rounds, the EDP values are already below 2−150 � 21−nb = 2−127. In

this paper we describe completely the distribution of DP of all characteristics over two rounds

of the AES. We also give results for four and more rounds. Our analysis is not based on any

hypothesis. The following example illustrates in a simple way the effects we want to examine

for the AES.
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Example 1 Consider the keyed map E[k], defined as

E[k](x) = ρ−1(k + ρ(x)), (1)

where ρ is an arbitrary invertible transformation [13]. Let MEDP (ρ) denote the maximum

EDP(a, b) of a differential over ρ, where only nonzero values for a are considered. Then

MEDP (ρ) is an upper bound for the EDP of a differential over E. Since E[0] is the iden-

tity transformation, for all differences a the differential (a, a) over the map E has fixed-key

probability DP[0](a, a) = 1. This property holds whatever value MEDP (ρ) takes.

This example is contrived. In practice we don’t expect DP[k] to deviate this strongly from

EDP. However, we observe effects that go in this direction. We found that for several ciphers,

including the AES, DP[k] has a distribution with a surprisingly rich structure.

4 Two-round plateau characteristics

In this section we show that for a large class of ciphers, two-round characteristics have a

DP[k] that can take only two values.

4.1 Planar differentials and maps

As customary, we consider ordered pairs of inputs [6], but we denote them using curled

braces ‘{}’ in order to avoid confusion with differentials. Let F(a,b) denote the set containing

the inputs x for which the pair {x, x + a} is a right pair for the differential (a, b) over an

unkeyed map. Let G(a,b) denote the set containing the corresponding outputs. Similarly, let

FQ[k] denote the set containing the inputs x for which the pair {x, x + a} is a right pair for

the characteristic Q over a keyed map. Let GQ[k] denote the set containing the corresponding

outputs. We introduce the concept of planar differentials:

Definition 2. A differential (a, b) is planar if F(a,b) and G(a,b) form affine subspaces [1]:

F(a,b) = u ⊕ U(a,b)

G(a,b) = v ⊕ V(a,b)
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with U(a,b) and V(a,b) vector spaces, u any element in F(a,b) and v any element in G(a,b).

If F(a,b) contains an element x, then it also contains x ⊕ a. Hence if F(a,b) is not empty, then

a ∈ U(a,b). The number of elements in F(a,b) is 2dim(U(a,b)), so dim(U(a,b)) = nb − weight(a, b).

Similarly, we have b ∈ V(a,b) and dim(V(a,b)) = nb − weight(a, b). We can now prove the

following lemmas.

Lemma 1. A differential (a, b) which has exactly two right pairs, is planar.

Proof. Denote the pairs by {p, p ⊕ a}, {p ⊕ a, p}. The elements p and p ⊕ a form an affine

subspace of dimension 1 with offset u = p and the basis of U(a,b) equal to (a). A similar

argument is valid for the elements of the pairs at the output. ut

Lemma 2. A differential (a, b) which has exactly four right pairs, is planar.

Proof. Denote the inputs of the pairs by p, p⊕a, q and q⊕a. These 4 elements lie in an affine

subspace of dimension 2 with offset u = p and basis of U(a,b) equal to (a, p ⊕ q). A similar

argument is valid for the elements of the pairs at the output. ut

Lemma 3. Any differential with DP = 1 is a planar differential.

Proof. F(a,b) and G(a,b) form the complete input space and output space respectively. ut

Examples of differentials with DP = 1 are the trivial differential (0, 0) and differentials

over linear maps. If DP(a, b) = 2t−nb , with t 6∈ {1, 2,nb}, the differential may or may not be

planar.

Definition 3. A map is planar if all differentials over it are planar.

Any map for which all non-trivial differentials have DP(a, b) ≤ 22−nb is planar. Such maps

are called differentially 4-uniform [21]. Now we give two lemmas on planar differentials over

composed maps. The first lemma applies for instance to a substitution step in a block cipher,

consisting of the parallel application of some S-boxes.

Lemma 4. Let y = α(x) be a map consisting of a set of parallel maps yi = αi(xi) with

x = (x0, x1, . . . , xt) and y = (y0, y1, . . . , yt). A differential (a, b) for which the differentials

(ai, bi) are planar, is planar.
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We have

U(a,b) = U(a0,b0) × U(a1,b1) × · · · × U(at,bt)

V(a,b) = V(a0,b0) × V(a1,b1) × · · · × V(at,bt)

with × denoting the direct product [1]. The following lemma applies to a sequence of maps.

Lemma 5. If (a, b) is a planar differential of α, then for any pair of affine maps L1 and L2

with L1 invertible, the differential (L1(a), L2(b)) is planar over L2 ◦ α ◦ L−1
1 .

Examples of ciphers in which single-round differentials are planar are the AES, but also 3-Way

[8], SHARK [25], Square [10], Camellia [4], Serpent [2] and Noekeon [11]. Some other popular

maps that are planar, are the majority function f(x, y, z) = xy⊕xz⊕yz and the ‘if’ function

g(x, y, z) = xy ⊕ (¬x)z or any map that is quadratic in GF(2).

4.2 Plateau characteristics

Similar to the concept of plateaued functions [28], for which the Walsh spectrum takes only

two values (in absolute value), we introduce here plateau characteristics as characteristics for

which the DP[k] takes only two values (where one value is always zero). The height of a plateau

characteristic determines how high the non-zero DP[k] value of the plateau characteristic is.

Definition 4. A characteristic Q is a plateau characteristic with height height(Q) if and

only if the following holds:

1. For a fraction 2nb−(weight(Q)+height(Q)) of the keys, DP[k](Q) = 2height(Q)−nb , and

2. For all other keys, DP[k](Q) = 0.

The height of a plateau characteristic can be bounded as follows. Firstly, height(Q) ≤ nb.

Secondly, height(Q) is maximal when all but one key have DP equal to zero. Denoting the

number of keys by 2nk , we obtain that in this case EDP equals 2−nk times the non-zero DP

value. Taking the logarithm, we obtain −weight(Q) = −nk + height(Q)− nb. Hence, we have

in all cases height(Q) ≤ nk + nb − weight(Q). We can now prove the following result on an

nb-bit map consisting of two steps and an addition with an nb-bit key in between (hence

nk = nb).
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Theorem 1 (Two-Round Plateau Characteristic Theorem). A characteristic Q =

(a, b, c) over a map consisting of two steps with a key addition in between, in which the differen-

tials (a, b) and (b, c) are planar, is a plateau characteristic with height(Q) = dim(V(a,b)∩U(b,c)).

Proof. The proof is based on geometrical arguments [1]. For right pairs the values at the

output of the first step are in G(a,b). The values at the input of the second step are in F(b,c),

or equivalently, the values at the output of the first step are in k ⊕ F(b,c). It follows that the

values at the output of the first step are in:

H = G(a,b) ∩ (k ⊕ F(b,c)) .

Since both differentials are planar, there exist offsets u, v such that

H = (v ⊕ V(a,b)) ∩ (k ⊕ u ⊕ U(b,c)) ,

with V(a,b) and U(b,c) vector spaces. We start by deriving the condition that H is non-empty.

First we translate the affine subspaces in the equation by the vector v:

v ⊕ H = V(a,b) ∩ (k ⊕ u ⊕ v ⊕ U(b,c)) .

v ⊕ H is a translated version of H and has the same number of elements. Now v ⊕ H is

non-empty iff there is a vector x ∈ V(a,b) and a vector y ∈ U(b,c) such that x = k ⊕ u ⊕ v ⊕ y

or formally, iff

∃x ∈ V(a,b), y ∈ U(b,c) : k ⊕ u ⊕ v = x ⊕ y .

This is equivalent to saying that (k⊕u⊕v) ∈ (V(a,b)⊕U(b,c)). If we denote u⊕v⊕(V(a,b)⊕U(b,c))

by KQ, this corresponds to saying that H is non-empty iff k ∈ KQ. Consider now the case

that H is non-empty and let w be an element of H. Clearly, w is an element of both G(a,b)

and k ⊕ F(b,c). It follows that w ⊕ k ⊕ F(b,c) = U(b,c) and hence G(a,b) = w ⊕ V(a,b) and

k ⊕ F(b,c) = w ⊕ U(b,c). We have

H = (w ⊕ V(a,b)) ∩ (w ⊕ U(b,c)) .
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Translation by w yields:

w ⊕ H = V(a,b) ∩ U(b,c) .

Let WQ = V(a,b) ∩U(b,c). The number of pairs in H is 2dim(WQ) if k ∈ KQ and zero otherwise.

The number of elements in KQ is determined by the dimension of V(a,b) ⊕ U(b,c). We use the

subspace dimension theorem: dim(U) + dim(V ) = dim(U ⊕ V ) + dim(U ∩ V ). This gives:

dim(V(a,b) ⊕ U(b,c)) = dim(V(a,b)) + dim(U(b,c)) − dim(V(a,b) ∩ U(b,c))

= (dim(V(a,b)) + dim(U(b,c))) − dim(V(a,b) ∩ U(b,c))

= (2nb − weight(Q)) − dim(WQ)

If we now denote height(Q) = dim(WQ), we have DP(Q) = 2height(Q)−nb for 22nb−weight(Q)−height(Q)

keys on the total number of 2nb keys, and zero for all other keys. ut

This theorem is valid for all ciphers in which single-round differentials are planar and

round keys are applied with XOR. This includes all ciphers mentioned in Section 4.1.

Like any other characteristic, a plateau characteristic has EDP(Q) = DP(a, b)DP(b, c) =

2−weight(Q). Only if height(Q) = nb − weight(Q), it holds that DP[k](Q) = EDP(Q) for all

keys. This can only be the case for characteristics with weight(Q) < nb.

4.3 Plateau characteristics in super boxes

Several ciphers that use S-boxes and linear transformations can also be described using the

structure of a super box.

Definition 5. A super box maps an array a of nt elements ai to an array e of nt elements

ei. Each of the elements has size ns. A super box takes a key k of size nt×ns = nb. It consists

of the sequence of four transformations (or steps):

– bi = S[ai]: nt parallel applications of a ns-bit S-box

– c = M(b): a linear map with branch number nt + 1 [10]

– d = c ⊕ k: key addition

– ei = S[di]: nt parallel applications of a ns-bit S-box
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The S-boxes in the two S-box steps may also be all different. A characteristic over the super

box can specify that one or more of the S-boxes have input difference 0. Such S-boxes have

always output difference 0, with probability 1. When computing the probability of a charac-

teristic, only the S-boxes with non-zero input difference need to be taken into account. They

are called active S-boxes.

We can prove the following upper bound on height(Q) for plateau characteristics in super

boxes.

Theorem 2. Let Q be a plateau characteristic over a super box. Let the sets γj denote all

possible selections of nt S-boxes from the super box. Then

height(Q) ≤ nb − max
j





∑

i∈γj

weight(xi, yi)



 ,

where (xi, yi) denotes a differential over an S-box.

Proof. Since height(Q) = dim(V(a,b) ∩ U(d,e)), we have height(Q) ≤ dim(V(a,b)). Taking for γ1

the selection of the nt S-boxes of the first step, we have from Definition 2:

dim(V(a,b)) = nb − weight(a, b) = nb −
nt

∑

i=1

weight(ai, bi) . (2)

Secondly, observe that the vectors (b, d) = (b,M(b)) are code vectors of a linear code over

GF(2ns) with length 2nt and dimension nt. Since the branch number of M equals nt + 1, the

minimal distance between code vectors is nt + 1, hence the code is MDS. Any nt symbols of

the codewords may be taken as message symbols [19]. Hence, we can always pick nt out of

the symbols, consider them as the message symbols (input) and compute the check symbols

(output) from them. This leads to the definition of alternative vector spaces V ′ which bound

height(Q) as before. The new definition of input and output leads to a new definition of input

difference a′, output difference e′ and intermediate differences b′, d′. This in turn leads to a

definition of a new vector space V ′ = Va′,b′ , which bounds height(Q) in the same was as in

(2). ut
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Hence, given a characteristic over a super box, one chooses the nt S-box differentials with

the highest weight and adds them. The bound for the height is nb minus this weight.

Theorem 3. Let SB be a super box with nt = 4. Then we have the following bounds on the

height of characteristics where all active S-boxes have weight ns − 1.

5 active boxes: height(Q) ≤ 3

6 active boxes: height(Q) ≤ 2

7 or 8 active boxes: height(Q) = 1

The theorem can be proven by going through all possibilities and counting. There is also a

link to the existence of codes: a characteristic with i active boxes and height h exists only if

there is a binary linear code with length i, distance i − 3 and dimension h, which contains

the vector (1, 1, 1, . . . , 1).

5 Plateau characteristics over more than 2 rounds

In this section we derive conditions for characteristics over more than 2 rounds to be plateau

characteristics. For ciphers with an AES-like block structure (the AES, Square, SHARK, . . . ),

the results of this section cover the majority of the characteristics. For ciphers without the

block structure (3-Way, Serpent, Noekeon, . . . ), only a small fraction of the characteristics is

covered.

We can extend the planar property of differentials to characteristics:

Definition 6. A characteristic Q is input-planar (respectively output-planar) if for all values

of the key it holds that FQ[k] (respectively GQ[k]) is either ∅ or an affine subspace.

Lemma 6. Plateau characteristics with height 1 or 2 are both input-planar and output-planar.

Proof. Let Q be a plateau characteristic. Then FQ[k] = GQ[k] = ∅ or #FQ[k] = #GQ[k] =

2height(Q). If height(Q) is 1 or 2, then the proofs of Lemma 1 and Lemma 2 can be extended

to the case of characteristics. ut
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Q1 (qn−1, qn)
FQ1 −→ GQ1 F(qn−1,qn) −→ G(qn−1,qn)

H = GQ1 ∩ F(qn−1,qn) −→ GQ ⊆ G(qn−1,qn)

proj. ↓ ↓ proj.
Hi −→ Oi

Fig. 1. Notation used in the proof of Theorem 4.

For a cipher with S-boxes that are differentially 4-uniform or differentially 2-uniform we

have the following result.

Theorem 4 (Planar Characteristic Extension Theorem). Let Q = (Q1, qn) be a char-

acteristic composed of an output-planar characteristic Q1 = (q0, . . . , qn−1), followed by a (one-

step) differential (qn−1, qn). If all S-boxes in (qn−1, qn) are active, then Q is output-planar.

Proof. In this proof, we drop [k] from the notation, which we illustrate in Figure 1. If we

look at the output of Q1, the elements of the right pairs of Q1, form the affine subspace VQ1 .

Since the differential (qn−1, qn) is planar, the elements of the right pairs of Q form an affine

subspace H = VQ1 ∩ U(qn−1,qn). We denote by Hi, 0 ≤ i < nt, the projection of H onto the

coordinate i: Hi contains the inputs of one S-box in the last step, for the right pairs of Q.

Since Hi is a projection of an affine subspace, it is also an affine subspace. We denote by Oi

the corresponding outputs of the S-box. The set Oi is nothing else than the projection of the

set GQ on the coordinate i.

Since the S-boxes are differentially 4-uniform (or 2-uniform), Hi and Oi contain 1, 2, or 4

elements and Oi is also an affine subspace. Using Lemma 4, we conclude that GQ is also an

affine subspace. ut

Note that this theorem also holds for a characteristic composed of a planar differential

in which all S-boxes are active followed by an input-planar characteristic. Planar plateau

characteristics can be composed to plateau characteristics. Theorem 1 can easily be extended.

Theorem 5 (Planar Characteristic Composition Theorem).

Let Q = (q0, q1, . . . , qi−1, qi, . . . , qn) be a characteristic over a map consisting of n steps with

a key addition as i-th step. If the characteristics Q1 = (q1, q2, . . . , qi−1) and Q2 = (qi, . . . , qn)
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are plateau characteristics with Q1 output-planar and Q2 input-planar, then Q is a plateau

characteristic with height(Q) = dim(VQ1 ∩ UQ2).

The proof is similar to the proof of Theorem 1. From this theorem follows this corollary:

Corollary 1. Let Q = (Q1, qn) be a characteristic composed of a characteristic Q1 = (q0, . . . , qn−1),

followed by a (one-round) planar differential (qn−1, qn). If Q1 is a plateau characteristic with

height 1 or 2, then Q is a plateau characteristic.

This is a special case of Theorem 1: according to Lemma 6, Q1 is output-planar and the

differential can be seen as a (one-round) input-planar plateau characteristic.

This extension of a plateau characteristic by a single round can be performed iteratively:

an r-round plateau characteristic with height 1 or 2 can be extended by an arbitrary number

of rounds, as long as the appended differentials are planar.

Plateau characteristics with height larger than 2, are in general neither input-planar nor

output-planar. For instance, assume that we have a plateau characteristic Q consisting of

an output-planar characteristic Q1 followed by an input-planar characteristic Q2 with Q =

(Q1, Q2). Then it follows from the proof of Theorem 1 that the elements of the right pairs of

Q form an affine subspace H at the junction of Q1 and Q2. The set H is transformed to the

set GQ[k] at the output. GQ[k] is a subset of GQ2 [k]. GQ2[k] is an affine subspace, but GQ[k]

in general is not an affine subspace.

6 Further observations

6.1 Effect of the key schedule

When we consider more than two rounds, the round keys are typically not independent.

They are related by means of the key schedule. The key schedule doesn’t change whether

a characteristic is a plateau characteristic. The only visible effect of the key schedule is on

the size of the set KQ which contains the keys for which DP[k](Q) > 0 (see the proof of

Theorem 1). The key schedule determines which values are possible for the expanded key. If

relatively many of the expanded keys are in KQ, then the average of DP[k](Q) will be larger

than EDP(Q).
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6.2 Impact on the DP of differentials

The dependence of the DP of characteristics on the key value means that the DP of differentials

also depends on the key. Assume we have a differential for which all characteristics are plateau

characteristics. If we denote the characteristics that contribute to a differential (a, b) by Qi

we have:

DP[k](a, b) = 2−nb
∑

i|k∈KQi

2height(Qi) . (3)

Hence this value varies per key k depending on the number of affine subspaces KQi
it is in.

7 Two-round characteristics in the AES

We now apply the results of the previous sections to the AES. We also compute the heights of

all two-round characteristics for the AES and for a simplified variant. Since the sequence of

two rounds of Square is equivalent to the sequence of two rounds of the AES, the distribution

of the heights of characteristics is the same in both cases.

7.1 The AES Super box

The AES S-box operates on GF(28) and can be described as

S[x] = L(x−1) + q, (4)

Here x−1 denotes the multiplicative inverse of x in GF(28), extended with 0 being mapped

to 0. L is a linear transformation over GF (2) and q a constant. Note that L is not linear over

GF(28) and can be expressed as a so-called linearized polynomial [18].

The AES super box is a super box where the elements are bytes and nt = 4 and M

is the multiplication with the MixColumns matrix, which we denote by Mc. If we consider

two AES rounds, swap the steps ShiftRows and SubBytes in the first round, and remove all

linear operations before the first application of SubBytes and after the second application of

SubBytes, then we obtain a map that can also be described as 4 parallel instances of the AES

super box.
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A differential characteristic through the AES super box consists of a sequence of 5 differ-

ences: a, b, c, d and e. In a characteristic through the AES super box, we always have c = d

(so we omit c) and d = Mcb. We denote these characteristics by (a, b, d, e).

7.2 Characteristics in the AES super box

The AES super box satisfies the criteria of Theorem 1 and hence all characteristics Q in

the AES super box are plateau characteristics. DP[k](Q) can be described by defining W =

V(a,d) ∩ U(d,e) and V(a,d) = Mc(V(a,b)), where Mc(V ) = {Mcv|v ∈ V }.

Applying Theorem 2 to the AES results in the following bounds. It holds always that

height(Q) ≤ 8. If all active S-boxes have weight 7, then height(Q) ≤ 4. Only if at most 3 S-

boxes have weight 7, height(Q) can be larger than 4. Theorem 3 further decreases the bounds

when all S-boxes have weight 7.

We have determined the weight and height of all characteristics over the AES super box.

An overview of the results is given in Table 1. Because of the large number of characteristics,

the entries in the table were not computed by checking the height of each characteristic

individually. We used the following observations to speed up the computations. Let Q =

(a, b, d, e) be a characteristic over the super box.

Lemma 7. For all non-zero a, b: a ∈ U(a,b) and b ∈ V(a,b).

Lemma 8. For differentials with weight 7 over a single S-box U(a,b) = {0, a} and V(a,b) =

{0, b}.

Hence U(a,b) is independent of the output difference b and V(a,b) of the input difference a.

Lemma 9. Let Q′ = (a′, b, d, e′) be a characteristic in which all S-box differentials have weight

6. Then for all Q = (a, b, d, e),

WQ ⊆ WQ′ .

Proof. Remember that WQ = Mc(V(a,b))∩U(d,e). From Lemma 7 and Lemma 8, we have that

V(a,b) ⊆ V(a′,b) and U(d,e) ⊆ U(d′,e). ut

Consequently, it is only needed to check the height of each characteristic with (a, e) chosen

such that all active S-boxes have weight 6, and then to evaluate the effect of increasing the
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weight of the active S-boxes by one. For this last step, only one out of the 126 possible

differences ai, respectively ei, needs to be tried for each active S-box.

7.3 Observations

We see in Table 1 that the characteristic weight ranges from 30 to 56 and the height from 1

to 5. It follows from the data in the table that the ratio

DP[k](Q)/EDP(Q) = 2height(Q)−32+weight(Q) (5)

ranges from 1 to 225. We call characteristics for which the ratio is 1 flat characteristics because

for these the equality DP[k](Q) = EDP(Q) holds for all keys. Table 1 shows that there are in

total 220.9 flat characteristics: those with weight 30 and height 2, and those with weight 31

and height 1.

The characteristics for which the ratio is 225 are the characteristics with weight 56 and

height 1. Only for a fraction 2−32.9 of the characteristics this ratio is smaller than 225. Since

the sequence of two AES rounds can be described as the parallel application of 4 super

boxes, it follows that for most characteristics over two rounds of the AES, there are keys

with DP[k](Q) = 2100EDP(Q). The characteristics that are the most interesting for standard

differential attacks, are the characteristics with the lowest weight. They are in the top rows

of the table. We see that exactly these characteristics have the highest heights, hence the

most variation between DP values for different keys. Characteristics with height 5 have a DP

equal to 32/232, which is almost three times higher than the maximal MEDP of a differential

(13.25/232 [14, 23, 24]).

There are 72 characteristics of height 5 and weight 30. These characteristics have nonzero

DP[k] for a fraction 232−30−5 = 2−3 of all keys. For a given key this results in an expected value

of 9 such characteristics with DP[k] = 25/232. Similarly, there are 211 characteristics of height

5 and weight 31 resulting in an expected value of 27 such characteristics with DP[k] = 25/232.

This totals to an expected number of 137 characteristics with DP[k] = 25/232 per key for the

AES super box. For 2 AES rounds, this is 548.
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The table shows also that it is easy to find characteristics Q1, Q2 with EDP(Q1) <

EDP(Q2) and height(Q1) > height(Q2).

7.4 An AES variant

If we remove the linear transformation L and the constant q from the S-box (4), we obtain a

cipher with a simpler algebraic structure than the AES. We call this variant the naive AES.

We computed the heights of all characteristics over the naive AES super box. The results

are summarized in Table 2. The comparison with the results in Table 1 shows us something

about the effect of adding L. (It can be shown that the choice of q has no impact here.) For

instance, we see that for the naive AES super box, there are no characteristics with height

5. The characteristics where all active S-boxes have weight 6, have always an even-numbered

height, and those with exactly one S-box with weight 7, have always on odd-numbered height.

Although the results on characteristics do not necessarily translate to results on differen-

tials, it appears that L has an impact on the differential properties of two and more rounds

of the AES. To the best of our knowledge, this is the first demonstration of the impact of L.

8 Characteristics over four or more rounds in the AES

Four-round AES can be described with a super box-like structure, where again nt = 4 but

now the elements are 32-bit words [26, 27]. The AES super boxes we defined before serve now

as (key-dependent) S-boxes. The super box-like structure is constructed as follows. Firstly,

rewrite the first two rounds and the last two rounds as the parallel applications of 4 AES

super boxes each. It can shown that the remaining linear transformations ‘in the middle’ form

together a map with branch number 5. The remaining ‘outer’ linear transformations can be

ignored.

A characteristic over such a super box-like structure consists of 5 to 8 smaller character-

istics, each over an AES super box. If the characteristics over the AES super boxes of the

first step are output-planar and the characteristics over the AES super boxes of the second

step are input-planar, then according to Theorem 5 the four-round characteristic is a plateau

characteristic. These conditions are fulfilled if the characteristics over the AES super boxes
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Table 1. Number of characteristics (binary logarithm) per number of active S-boxes, weight
and height for the AES super box.

No. active characteristic height
S-boxes weight 1 2 3 4 5

5 30 — 12.6 12.6 10.6 6.2
31 20.9 22.1 21.2 18.1 11.0
32 29.8 30.0 28.2 23.4 —
33 37.1 36.9 33.7 26.4 —
34 43.2 42.9 36.2 — —
35 48.0 47.5 — — —

6 36 20.7 15.6 8.3 3.8 —
37 30.3 24.2 16.3 11.6 —
38 38.6 31.5 23.1 17.5 —
39 46.1 38.1 28.9 — —
40 52.6 44.0 33.4 — —
41 58.3 49.3 — — —
42 62.7 53.4 — — —

7 42 27.0 15.7 5.3 — —
43 36.8 24.3 13.1 — —
44 45.3 31.7 19.5 — —
45 53.1 38.0 24.9 — —
46 60.0 43.5 — — —
47 66.3 48.0 — — —
48 71.7 50.9 — — —
49 75.9 — — — —

8 48 32.0 14.7 1.0 — —
49 41.9 23.7 9.0 — —
50 50.7 31.4 15.0 — —
51 58.7 38.3 — — —
52 66.0 44.5 — — —
53 72.7 49.9 — — —
54 78.7 54.1 — — —
55 83.7 — — — —
56 87.9 — — — —

total 87.9 55.0 36.6 26.6 11.0
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Table 2. Number of characteristics (binary logarithm) per number of active S-boxes, weight
and height for the naive super box.

No. active characteristic height
S-boxes weight 1 2 3 4

5 30 — 12.6 — 13.0
31 21.9 — 22.3 —
32 29.9 29.6 28.8 —
33 37.1 37.0 33.5 —
34 43.2 42.9 — —
35 48.0 47.5 — —

6 36 — 20.8 — 12.8
37 30.3 — 22.4 —
38 38.7 30.1 29.0 —
39 46.1 37.7 34.2 —
40 52.6 44.0 — —
41 58.3 49.3 — —
42 62.7 53.4 — —

7 42 — 27.0 — 11.0
43 36.8 — 20.8 —
44 45.3 28.9 27.3 —
45 53.1 36.4 31.9 —
46 60.0 42.4 — —
47 66.3 46.9 — —
48 71.7 — — —
49 75.9 — — —

8 48 — 32.0 — 13.0
49 41.9 — 23.0 —
50 50.7 31.4 29.6 —
51 58.7 39.0 34.7 —
52 66.0 45.3 — —
53 72.7 50.6 — —
54 78.7 54.4 — —
55 83.7 — — —
56 87.9 — — —

total 87.9 55.1 36.0 14.6
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– have height 1 or 2 (by Lemma 6), or

– have 4 active S-boxes at the output, respectively at the input (by Theorem 4).

This implies that most of the four-round characteristics over the AES are plateau charac-

teristics. We have not determined the distribution of the heights, but Theorem 2 and a

straightforward generalization of Theorem 3 apply. Since the overwhelming majority of the

characteristics over the AES super box have height 1, we expect that also the vast majority

of the characteristics over 4 rounds of the AES will have height 1. Corollary 1 would then

imply that the vast majority of characteristics over more than 4 AES rounds are plateau

characteristics with height 1.

9 DP of differentials in the AES

The exact distribution of DP[k](a, b) depends on the relative positions of the affine subspaces

KQi
and the height of the characteristics. Flat characteristics add a constant term and do not

contribute to the variability. The larger the height of a characteristic, the more it contributes

to the variability. In the AES super box there is at most one flat characteristic per differential

with 5 active S-boxes and none for differentials with more than 5 active S-boxes.

The AES has no flat plateau characteristics over 4 rounds or more, and the vast majority

of characteristics has height equal to 1. In the assumption that the affine subspaces KQi
are

independent, the distribution of the DP[k] of any four-round differential is the convolution

of a huge number of distributions with a high peak in 0 and a very small peak in 2−127. We

conjecture that this gives rise to a Poisson distribution.

10 Conclusions and further work

We believe that an analysis of resistance against differential cryptanalysis needs to take into

account more than the average behavior of a key-dependent map.

In this paper, we showed that the DP[k] of certain characteristics is distributed in a very

structured way. For characteristics over the AES super box, we showed that DP[k] ∈ 0, 2h−32,

with h an integer value between 1 and 5. We think that the results are somewhat surprising
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and deserve to be investigated in further detail. We have illustrated our analysis only on

the AES, but several other ciphers using differentially 4-uniform S-boxes will show a similar

behavior.

It would be interesting to find out what the maximum DP[k] is for characteristics over

more than 2 rounds. If the impact on the DP[k] of differentials over more than 2 rounds can

be investigated, then this could lead to new insights about the security margin of the AES

and other ciphers.
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