
Correlation Analysis in GF(2n)

Joan DAEMEN a and Vincent RIJMEN b

a STMicroelectronics, Belgium
b Dept. of Electrical Engineering/ESAT, K.U.Leuven and IBBT and IAIK, Graz

University of Technology, Austria

Abstract. In this paper we provide a description of Rijndael using only algebraic
operations in GF(28). How the elements of GF(28) are represented in bytes can
be seen as a detail of the specification. In classical correlation analysis such as lin-
ear cryptanalysis, however, one works at the bit level and must assume a specific
representation to study the propagation properties. We demonstrate how to conduct
correlation analysis at the level of elements of GF(2n), without having to deal
with representation issues. While this approach does not result in better bounds or
stronger attacks, it allows to analytically address the resistance against linear crypt-
analysis similar to what has been done for differential cryptanalysis in [3]. Further
we show how linear functions over GF(2)n map one-to-one to linear functions
over GF(2n) by the choice of a basis, and make the link with their mask propaga-
tion properties.

Keywords. Linear cryptanalysis, Galois Fields, Correlation

Introduction

In the specification of Rijndael [2], we have extensively used operations in a finite field,
where the bytes of the state and key represent elements of GF(28). Still, as for most
block ciphers, Rijndael operates on plaintext blocks, ciphertext blocks and keys that are
strings of bits. Apart from some exceptions such as interpolation attacks [5] and alge-
braically oriented analysis [4,8], cryptanalysis of ciphers is also generally conducted at
the bit level. In particular, linear cryptanalysis exploits high correlations between linear
combinations of bits of the state in different stages of the encryption process [2].

In Section 6, we demonstrate how Rijndael can be specified completely with alge-
braic operations in GF(28). How the elements of GF(28) are represented in bytes can be
seen as a detail of the specification. Addressing this representation issue in the specifica-
tions is important for different implementations of Rijndael to be interoperable, but not
more so than for instance the ordering of the bits within the bytes, or the way the bytes
of the plaintext and ciphertext blocks are mapped onto the state bytes.

We can make abstraction from the representation of the elements of GF(28) and
consider a block cipher that operates on strings of elements of GF(28). We call this
generalisation RIJNDAEL-GF. Rijndael can be seen as an instance of RIJNDAEL-GF,
where the representation of the elements has been specified. In principle, this can be
applied to most block ciphers. Each block cipher for which the block length and the key
length are a multiple of n can in principle be generalized to operate on strings of elements



of GF(2n). However, unlike for Rijndael, the specification of these generalized ciphers
may become quite complicated.

Intuitively, it seems obvious that if Rijndael has a cryptographic weakness, this is
inherited by RIJNDAEL-GF and any instance of it, whatever the representation of the el-
ements of GF(28). Still, in classical correlation analysis such as linear cryptanalysis one
works at the bit level and must assume a specific representation to study the propagation
properties. In this paper, we demonstrate how to conduct correlation analysis at the level
of elements of GF(2n), without having to deal with representation issues.

This paper is devoted to functions over fields with characteristic two. However,
building on the generalization of linear cryptanalysis published in [1] all properties and
theorems can be generalized to finite fields with odd characteristic. For clarity of descrip-
tion, we will denote the field GF(2) by F and a vector space over this field by Fn. The
extension field GF(2n) will be denoted by G and a vector space over this extension field
by Gℓ.

We start by describing correlation properties of functions over Fn and of functions
over G, with the focus on linear functions. This is further generalized to functions over
Gℓ. We then discuss representations and bases in Fn and show how propagation in func-
tions over G maps to propagation in vector Boolean functions by the choice of a basis.
Subsequently, we prove two theorems that relate representations of linear functions in
Fn and functions in G that are linear over F. Finally we specify RIJNDAEL-GF.

1. Correlation in functions over Fn

In this section we briefly recall some terms and definitions from ‘standard’ linear crypt-
analysis.

We denote elements of Fn by a, b. The correlation between binary Boolean func-
tions can be defined in terms of their Fourier counterparts (−1)f(a). Note that the Fourier
counterpart of a Boolean function returns 1 if f(a) = 0 and -1 if f(a) = 1.

Definition 1 The correlation Cf,g between two binary Boolean functions f(a) and g(a)
is defined as the expected value of the product of their Fourier counterparts:

Cf,g = E
[
(−1)f(a)(−1)g(a)

]
= Prob(f(a) = g(a))− Prob(f(a) ∕= g(a))

= 2 ⋅ Prob(f(a) = g(a))− 1 .

A parity of a Boolean vector is a binary Boolean function that consists of the binary
sum (XOR) of a number of bits. A parity is determined by the positions of the bits of the
Boolean vector that are included in the XOR.

The (selection) mask w of a parity is a Boolean vector value that has a 1 in the com-
ponents that are included in the parity and a 0 in all other components. Analogous to the
inner product of vectors in linear algebra, we express the parity of vector a correspond-
ing with mask w as wTa. In this expression the T suffix denotes transposition of the
vector w.



In linear cryptanalysis, we need correlation between parities of input and output of
a vector Boolean function f . The correlation between input mask w and output mask u
over a vector Boolean function f is given by:

Cf
u,w = 2−n

∑
a

(−1)w
Ta(−1)u

Tf(a)

= 2−n
∑
a

(−1)w
Ta+uTf(a).

2. Description of correlation in functions over G

In this section we study the correlation properties of the functions over G:

f : G→ G : a 7→ b = f(a).

All functions over G can be expressed as a polynomial over G of degree at most 2n − 1:

f(a) =

2n−1∑
i=0

cia
i.

Given a table specification where the output value f(a) is given for the 2n different
input values a, the 2n coefficients of this polynomial can be found by applying Lagrange
interpolation [7, p. 28]. On the other hand, given a polynomial expression, the table
specification can be found by evaluating the polynomial for all values of a.

For Boolean functions, correlation is defined between parities. For a function over
G, individual bits cannot be distinguished without adopting a representation, and hence
speaking about parities does not make sense. A parity is a function that maps Fn to F,
which is linear over F. In G, we can find functions with the same properties. For that
purpose, we use the trace function in a finite field [7].

Definition 2 Let x be an element of G. The trace of x over F is defined by

Tr(x) = x+ x2 + x2
2

+ x2
3

+ ⋅ ⋅ ⋅+ x2
n−1

.

The trace is linear over F:

∀ x, y ∈ G : Tr(x+ y) = Tr(x) + Tr(y)

∀ a ∈ F,∀ x ∈ G : Tr(ax) = aTr(x).

and it can be shown that Tr(x) is an element of F.
It follows that the functions of the form

f(a) = Tr(wa)

with w ∈ G are linear functions mapping G to F. There are exactly 2n such functions,
one for each value of w. We call the function Tr(wa) a trace parity, and the correspond-
ing value w a trace mask.



Example 1 We consider the field GF(23). Let � be a root of x3 + x + 1 = 0. Then the
elements of GF(23) can be denoted by 0, 1, �, �+1, �2, �2+1, �2+� and �2+�+1.
The traces of the elements are given in Table 1.

Table 1. The elements of GF(23) and their traces.

a Tr(a) a Tr(a)

0 0 �3 = �+ 1 1

1 1 �4 = �2 + � 0

� 0 �5 = �2 + �+ 1 1

�2 0 �6 = �2 + 1 1

In the analysis of correlation properties of functions over G, trace parities play the
role that is played by the parities in the correlation analysis of Boolean functions, where
p = 2 and n = 1. When a representation is chosen, these functions can be mapped
one-to-one to parities (see Sect. 5.1).

By working with trace masks, it is possible to study correlation properties in func-
tions over G without having to specify a basis. Hence, the obtained results are valid for
all choices of basis. Once a basis is chosen, trace masks can be converted to selection
masks (see Theorem 2).

For a function f over G, we denote the correlation between an input trace parity
Tr(wa) and an output trace parity Tr(uf(a)) by Cf

u,w. We have

Cf
u,w = 2−n

∑
a

(−1)Tr(wa)(−1)Tr(uf(a))

= 2−n
∑
a

(−1)Tr(wa)+Tr(uf(a))

= 2−n
∑
a

(−1)Tr(wa+uf(a)).

The value of this correlation is determined by the number of values a that satisfy

Tr(wa+ uf(a)) = 0. (1)

If this equation is satisfied by r values a, the correlation Cf
u,w is equal to 21−nr − 1. If

it has no solutions, the correlation is −1; if it is satisfied by all values a, the correlation
is 1; and if it is satisfied by exactly half of the possible values a, the correlation is 0. By
using the polynomial expression for f , (1) becomes a polynomial equation in a:

Tr(wa+ u
∑
i

cia
i) = 0.

For some cases the number of solutions of these polynomials can be analytically deter-
mined providing provable bounds for correlation properties. See for example the results
on Kloosterman sums in [6] that provide bounds on the input-output correlation of the
multiplicative inverse in G.



Example 2 Let us consider the following operation:

b = f(a) = a+ c,

where c is a constant. We can determine the correlation by finding the number of solu-
tions of

Tr(wa+ u(a+ c)) = 0.

This is equivalent to

Tr((w + u)a+ uc) = 0.

If w + u is different from 0, the trace is zero for exactly half of the values of a, and the
correlation is 0. If w = u this becomes

Tr(uc) = 0.

This equation is true for all values of a if Tr(uc) = 0, and has no solutions if Tr(uc) = 1.
It follows that the addition of a constant has no effect on the trace mask and that the sign
of the correlation is equal to (−1)Tr(uc).

2.1. Functions that are linear over G

The functions of G that are linear over G are of the form

f(a) = l(0)a,

where l(0) is an element of G. Hence, there are exactly 2n functions over G that are linear
over G.

For determining the correlation we can find the number of solutions of

Tr(wa+ ul(0)a) = Tr((w + ul(0))a) = 0.

If the factor of a is different from 0, the correlation is 0. The correlation between Tr(wa)
and Tr(ub) is equal to 1 iff

w = l(0)u.

2.2. Functions that are linear over F

A function over G is linear over F if it satisfies the following

∀ x, y ∈ G : f(x+ y) = f(x) + f(y)

Observe that the functions that are linear over G are a subset of the functions that are
linear over F. For example, the function f(x) = x2 is linear over F, but not over G:

f(x+ y) = (x+ y)2 = x2 + xy + yx+ y2 = x2 + y2

= f(x) + f(y)

f(ax) = a2f(x) ∕= af(x) if a ∕∈ F.



In general, the functions of G that are linear over F are the so-called linearized polyno-
mials [7]:

f(a) =

n−1∑
t=0

l(t)a2
t

, with l(t) ∈ G. (2)

The relation between the trace mask at the input and the trace mask at the output is
not trivial.

Theorem 1 For a function b =
∑n−1

t=0 l
(t)a2

t

an output trace parity Tr(ub) is correlated
to input trace parity Tr(wa) with a correlation of 1 iff

w =

n−1∑
t=0

(l(n−t mod n)u)2
t

. (3)

Proof 1 We will prove that Tr(wa) = Tr(ub) and hence that Tr(wa + ub) = 0 for all
values of a if w is given by (3). All computations with variables t, s and r are performed
modulo n, and all summations are from 0 to n− 1.

Tr(wa) = Tr(ub)

Tr

(∑
t

(l(n−t)u)2
t

a

)
= Tr

(
u
∑
t

l(t)a2
t

)

∑
s

(∑
t

l(n−t)2
t

u2
t

a

)2s

=
∑
s

(∑
t

l(t)ua2
t

)2s

∑
s

∑
t

l(n−t)2
s+t

u2
s+t

a2
s

=
∑
s

∑
t

l(t)
2s

u2
s

a2
s+t

∑
s

∑
t

l(n−t)2
s+t

u2
s+t

a2
s

=
∑

r=s+t

∑
t

l(t)
2r−t

u2
r−t

a2
r

∑
s

∑
r=n−t

l(r)
2s−r

u2
s−r

a2
s

=
∑
s

∑
t

l(t)
2s−t

u2
s−t

a2
s

∑
s

∑
t

l(t)
2s−t

u2
s−t

a2
s

=
∑
s

∑
t

l(t)
2s−t

u2
s−t

a2
s

.

⊓⊔

We illustrate this with the following example.

Example 3 We consider two transformations f and g over GF(23), defined by

f(a) = �a

g(a) = a4 + (�2 + �+ 1)a2.

For both functions, we want to derive a general expression that for any output trace mask
u gives the input trace mask w it correlates with. We denote these expressions by fd and
gd, respectively. Applying Theorem 1, we obtain for f(a):



l(0) = �, l(1) = l(2) = 0,

and hence

w = fd(u) = �u. (4)

Similarly, for g(a) we have

l(0) = 0, l(1) = �2 + �+ 1, l(2) = 1,

and hence

w = gd = u2 + ((�2 + �+ 1)u)4 = u2 + (�2 + 1)u4. (5)

3. Description of correlation in functions over Gℓ

In this section we treat the correlation properties of functions that operate on arrays of ℓ
elements of G. We denote the arrays by

A = [a1 a2 a3 . . . aℓ ]
T
.

where the elements ai ∈ G. We have

Q : Gℓ → Gℓ : A 7→ B = F (A).

The trace parities can be extended to vectors. We can define a trace mask vector as

W = [w1 w2 w3 . . . wℓ]
T
.

where the elements wi ∈ G. The trace parities for a vector are of the form

∑
Tr(wiai) = Tr

(∑
i

wiai

)
= Tr(WTA).

We can define a correlation between an input trace parity Tr(WTA) and an output trace
parity Tr(UTQ(A)):

CF
U ,W = 2−nℓ

∑
A

(−1)Tr(W
TA)(−1)Tr(U

TQ(A))

= 2−nℓ
∑
A

(−1)Tr(W
TA)+Tr(UTQ(A))

= 2−nℓ
∑
A

(−1)Tr(W
TA+UTQ(A)).



3.1. Functions that are linear over G

If F is linear over G, it can be denoted by a matrix multiplication. We have⎡⎢⎢⎢⎢⎢⎣
b1
b2
b3
...
bℓ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
l1,1 l1,2 l1,3 ⋅ ⋅ ⋅ l1,ℓ
l2,1 l2,2 l2,3 ⋅ ⋅ ⋅ l2,ℓ
l3,1 l3,2 l3,3 ⋅ ⋅ ⋅ l3,ℓ

...
...

...
. . .

...
lℓ,1 lℓ,2 lℓ,3 ⋅ ⋅ ⋅ lℓ,ℓ

⎤⎥⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎢⎣
a1
a2
a3
...
aℓ

⎤⎥⎥⎥⎥⎥⎦ .

Or for short B = LA. The elements of the matrix are elements of G.
For the correlation, we have:

Tr(WTA+UTLA) = Tr(WTA+ (LTU)TA)

= Tr((W + LTU)TA).

Hence, the correlation between Tr(WTA) and Tr(UTB) is equal to 1 if

W = LTU . (6)

3.2. Functions that are linear over F

Generalizing equation (2) to vectors of G yields

bi =
∑
j

∑
t

l
(t)
i,ja

2t

j 0 ≤ i < n.

If we introduce the following notation:

A2t =
[
a2

t

1 a2
t

2 a2
t

3 . . . a2
t

ℓ

]
,

this can be written as

B =
∑
t

L(t)A2t .

For the relation between the input trace mask and the output trace mask, it can be
proven that

W =
∑
t

(L(n−t mod n)TU)2
t

.

4. Representations of G

In this section we treat vector representations of G, bases and dual bases. These play an
essential role in the mapping of propagation properties from functions over G to those of
Boolean functions.



4.1. Vector space representation of G

The additive group of the finite field G and the n-dimensional vector space over F are
isomorphic. The addition of vectors in this vector space corresponds to the addition in
G. We can choose a basis e consisting of n elements e(i) ∈ G. We depict the basis e by
a column vector that has as elements the elements of the basis:

e =
[
e(1) e(2) ⋅ ⋅ ⋅ e(n)

]T
The elements of G can be represented by their coordinates with respect to this basis. We
have

a =
∑
i

aie
(i) = aTe. (7)

where ai ∈ F are the coordinates of a with respect to the basis e and where a is the
column vector consisting of coordinates ai. The map

�e : G→ Fn : a 7→ �e(a) = a

forms an isomorphism.

4.2. Dual Bases

Coordinates of a field element with respect to a basis can be expressed in terms of the
dual basis and the trace map.

Definition 3 Two bases e and d are called dual bases if for all i and j with 1 ≤ i and
j ≤ n, it holds that

Tr(d(i)e(j)) = �(i⊕ j), (8)

Every base has exactly one dual base. Let e and d be dual bases. Then we have

Tr(d(j)a) = Tr

(
d(j)

n∑
i=1

aie
(i)

)
=

n∑
i=1

aiTr(d
(j)e(i)) = aj .

Hence the coordinates with respect to basis e can be expressed in an elegant way by
means of the trace map and the dual basis d [7]:

�e(a) = a =
[
Tr(d(1)a) Tr(d(2)a) . . . Tr(d(n)a)

]
. (9)

Applying (7) gives:

a =

n∑
i=1

Tr(d(i)a)e(i) =

n∑
i=1

Tr(e(i)a)d(i). (10)

Example 4 By choosing a basis, we can represent the elements of GF(23) as vectors.
We choose the basis e as follows:



e = [�2 + �+ 1, �+ 1, 1]T.

The dual basis of e can be determined by solving (8). It is given by

d = [�, �2 + �, �2 + 1]T.

Table 2 shows the coordinates of the elements of GF(23), with respect to both bases.

Table 2. Coordinates of the field elements, with respect to the bases e and d.

a a ad

0 000 000

1 001 111

�+ 1 010 011

� 011 100

�2 + �+ 1 100 101

�2 + � 101 010

�2 110 110

�2 + 1 111 001

5. Boolean Functions and Functions in G

Functions of G can be mapped to functions of Fn by choosing a basis e in G. Given

f : G→ G : a 7→ b = f(a),

we can define a vector Boolean function f :

f : Fn → Fn : a 7→ b = f(a)

where

a = [a1 a2 . . . an]

b = [b1 b2 . . . bn] ,

and

ai = Tr(ad(i))

bi = Tr(bd(i)).

On the other hand, given a vector Boolean function g, a function over G can be defined
as

a = aTe

b = bTe.

So in short, f = �e ∘ f ∘ �−1
e and f = �−1

e ∘ f ∘ �e.
This can be extended to functions operating on vectors of elements of G.



5.1. Relationship Between Trace Masks and Selection Masks

If we study correlations in Fn, then we have to use selection masks, and we need to
specify a basis. We can avoid specification of a basis if we study instead the correlations
in G, and work with trace masks. Since there exists an isomorphism between Fn and
G, we can expect that for every selection mask w there exists a trace mask w, and vice
versa.

Since generally Tr(wa) ∕= �e(w)
T
a, a selection mask w = �e(w) usually does not

correspond to the trace mask w. This is illustrated by the example below.

Example 5 We use basis e defined in Example 4. We take w = �, hence wT = [011].
Then it follows from Table 3 that Tr(wa) ∕= wTa.

Table 3. Tr(wa) ∕= wTa.

a aT Tr(�a) [011]Ta

0 000 0 0

1 001 0 1

�+ 1 010 0 1

� 011 0 0

�2 + �+ 1 100 1 0

�2 + � 101 1 1

�2 110 1 1

�2 + 1 111 1 0

In the following theorem, we give and prove the correct relation between trace masks
and selection masks.

Theorem 2 Let a = �e(a). Then the trace mask w corresponds to �d(w) with d the dual
basis of e.

Proof 2 We prove that

Tr(wa) = wd
Ta,

and hence that the correlations in Fn and G have the same value if the relation between
the masks is satisfied. Applying (10) to w and a, we get

Tr(wa) = Tr

⎛⎝⎛⎝∑
i

Tr(e(i)w)d(i)

⎞⎠⎛⎝∑
j

Tr(d(j)a)e(j)

⎞⎠⎞⎠ .

Since the output of the trace map lies in F, and since the trace map is linear over F, we
can convert this to:

Tr(wa) =
∑
i

Tr(e(i)w)
∑
j

Tr(d(j)a)Tr(d(i)e(j))

=
∑
i

Tr(e(i)w)
∑
j

Tr(d(j)a)�(i⊕ j)

=
∑
i

Tr(e(i)w)Tr(d(i)a).



Applying (9) twice completes the proof. ⊓⊔

5.2. Relationship Between Linear Functions in Fn and G

A linear function of Fn is completely specified by an n× n matrix M:

b = Ma.

A linear function of G is specified by the n coefficients l(t) ∈ G in

b =

n−1∑
t=0

l(t)a2
t

.

After choosing a basis e over G, these two representations can be converted to one an-
other.

Theorem 3 Given the coefficients l(t) and a basis e, the elements of the matrix M are
given by

Mij =

n−1∑
t=0

Tr

(
l(t)d(i)e(j)

2t
)
.

Proof 3 We will derive an expression of bi as a linear combination of aj in terms of the
factors l(t). For a component bi we have

bi = Tr(bd(i))

= Tr

(∑
t

l(t)a2
t

d(i)

)

=
∑
t

Tr(l(t)a2
t

d(i)). (11)

The powers of a can be expressed in terms of the components aj:

a2
t

=

⎛⎝∑
j

aje
(j)

⎞⎠2t

=
∑
j

aje
(j)2

t

, (12)

where we use the fact that exponentiation by 2t is linear over F to obtain (12). Substitut-
ing (12) in (11) yields

bi =
∑
t

Tr

⎛⎝l(t)∑
j

aje
(j)2

t

d(i)

⎞⎠
=
∑
t

∑
j

Tr

(
l(t)e(j)

2t

d(i)aj

)



=
∑
j

(∑
t

Tr(l(t)e(j)
2t

d(i))

)
aj .

It follows that

Mij =
∑
t

Tr

(
l(t)e(j)

2t

d(i)
)
,

proving the theorem. ⊓⊔

Theorem 4 Given matrix M and a basis e, the elements l(t) are given by

l(t) =

n∑
i=1

n∑
j=1

Mijd
(j)2

t

e(i).

Proof 4 We will express b as a function of powers of a in terms of the elements of the
matrix M. We have

b =
∑
i

bie
(i), (13)

and

bi =
∑
j

Mijaj

=
∑
j

MijTr(ad
(j))

=
∑
j

Mij

∑
t

a2
t

d(j)
2t

. (14)

Substituting (14) into (13) yields

b =
∑
i

∑
j

Mij

∑
t

a2
t

d(j)
2t

e(i)

=
∑
t

⎛⎝∑
i

∑
j

Mijd
(j)2

t

e(i)

⎞⎠ a2
t

.

It follows that

l(t) =
∑
i

∑
j

Mijd
(j)2

t

e(i),

proving the theorem. ⊓⊔

Figure 1 illustrates the relations between the selection mask and trace mask at the
input and output of linear functions in G. Remember that we always express the input
mask w as a function of the output mask u.

We illustrate this in the next example.



a

b =
∑

t l
(t)a2

t

b

⇕a = aTe
b = bTe

a

b = Ma

b

Tr(wa)

w =
∑

t

(
l(n−t)u

)2t
Tr(ub)

⇕ w = wT
d d

u = uT
d d

wT
d a

wd = MTud

uT
d b

choice of basis e and its dual basis d

� -
(6)

� -
(3)

Figure 1. The propagation of selection and trace masks through a function that is linear over F.

Example 6 We take the functions f and g of Example 3 and the bases e and d of Exam-
ple 4. Table 4 shows the coordinates of the elements of GF(23), as well as the coordinates
of the images of f and g with respect to e.

Table 4. Coordinates of the field elements, and the images of f and g with respect to the basis e.

a a b = f(a) b = g(a)

0 000 000 000

1 001 011 101

�+ 1 010 101 001

� 011 110 100

�2 + �+ 1 100 111 100

�2 + � 101 100 001

�2 110 010 101

�2 + 1 111 001 000

Once the coordinates of the inputs and outputs of f and g have been determined, we
can derive the matrices M and N that describe the functions f and g in the vector space:

M =

⎡⎣1 1 01 0 1
1 1 1

⎤⎦ , N =

⎡⎣1 0 10 0 0
0 1 1

⎤⎦ .
The transformations to derive input selection masks from output selection masks are
determined by MT and NT:

fd(ud) =MTud (15)

gd(ud) = NTud. (16)



Table 5 shows for all the elements of GF(23) the coordinates with respect to basis d
in the first column, the coordinates of the images of fd and gd calculated according to
(15) and (16) and the second and third column. The fourth column gives the elements of
GF(23), the fifth and the sixth column give the functions f and g according to (4)–(5).
It can now be verified that the coordinates in the second, respectively the third column
correspond to the field elements in the fifth, respectively the sixth column.

Table 5. The functions fd and gd.

ud wd = fd(ud) wd = gd(ud) u w = fd(u) w = gd(u)

000 000 000 0 0 0

001 111 011 �2 + 1 1 �+ 1

010 101 000 �2 + � �2 + �+ 1 0

011 010 011 �+ 1 �2 + � �+ 1

100 110 101 � �2 �2 + �+ 1

101 001 110 �2 + �+ 1 �2 + 1 �2

110 011 101 �2 �+ 1 �2 + �+ 1

111 100 110 1 � �2

6. Rijndael-GF

We will now define RIJNDAEL-GF. This is a block cipher very much like Rijndael, but
in which the keys, plaintext and ciphertexts consist of sequences of elements of GF(28)
rather than bytes. We will express constants in this specification by powers of �, where
� is a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 and hence a generator of
the multiplicative group of GF(28).

We will first specify the RIJNDAEL-GF round transformation. It operates on a state
in GF(28)

n
t where nt ∈ {16, 20, 24, 28, 32}.

The step SubBytes-GF operates on the individual elements of the state. It is com-
posed of two sub-steps. The first step is taking the multiplicative inverse in G:

g(a) = a−1, (17)

with 0 mapping to 0. The second sub-step consists of applying the following linearized
polynomial:

f(a) = �2a+�199a2+�99a2
2

+�185a2
3

+�197a2
4

+a2
5

+�96a2
6

+�232a2
7

,(18)

followed by the addition of the following constant: �195.
The step ShiftRows-GF is a transposition that does not modify the values of the

elements in the state but merely changes their positions. It is the same as in Rijndael.
The mixing step MixColumns-GF operates independently on 4-element columns

and mixes them linearly by multiplication with the following matrix:⎡⎢⎢⎣
�25 � 1 1
1 �25 � 1
1 1 �25 �
� 1 1 �25

⎤⎥⎥⎦



Finally, the addition of a round key AddRoundKey-GF consists of the addition of
a round key by a simple addition in GF(28).

The key expansion is the same as that in Rijndael, with the exception that the Rijn-
dael S-boxes are replaced by the RIJNDAEL-GF S-box and the round constants defined
as RC[i] = �25(i−1).

RIJNDAEL-GF, together with the choice of a representation of the elements of
GF(28) as bytes constitutes a block cipher operating on bit strings. We can now show that
RIJNDAEL-GF is equivalent to Rijndael. As a matter of fact, the choice of the following
basis converts RIJNDAEL-GF into Rijndael:

e = 1, �25, �50, �75, �100, �125, �150, �175.

We can compute the corresponding dual basis d by solving (8). This yields:

d = �166, �187, �37, �26, �236, �191, �196, �48.

In Rijndael the second sub-step of the S-box is specified as the multiplication with a
binary matrix. This matrix can be reconstructed by applying Theorem 3 to (18) using
these bases. The equivalence of the matrices of MixColumns and MixColumns-GF
follows from the fact that �−1

e (02) = �25 and �−1
e (03) = 1 + �25 = �.

References

[1] Thomas Baignères, Jacques Stern, and Serge Vaudenay, Linear cryptanalysis of non binary ciphers, Se-
lected Areas in Cryptography (Carlisle M. Adams, Ali Miri, and Michael J. Wiener, eds.), Lecture Notes
in Computer Science, vol. 4876, Springer, 2007, pp. 184–211.

[2] J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption standard, Springer-
Verlag, 2002.

[3] Joan Daemen and Vincent Rijmen, Understanding two-round differentials in aes, SCN (Roberto De Prisco
and Moti Yung, eds.), Lecture Notes in Computer Science, vol. 4116, Springer, 2006, pp. 78–94.

[4] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner, and Doug
Whiting, Improved cryptanalysis of Rijndael, FSE (Bruce Schneier, ed.), Lecture Notes in Computer
Science, vol. 1978, Springer, 2000, pp. 213–230.

[5] Thomas Jakobsen and Lars R. Knudsen, The interpolation attack on block ciphers, FSE (Eli Biham, ed.),
Lecture Notes in Computer Science, vol. 1267, Springer, 1997, pp. 28–40.

[6] Gilles Lachaud and Jacques Wolfmann, The weights of the orthogonals of the extended quadratic binary
Goppa codes, IEEE Transactions on Information Theory 36 (1990), no. 3, 686–692.

[7] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications, Cambridge Uni-
versity Press, 1986 (Reprinted 1988).

[8] Sean Murphy and Matthew J. B. Robshaw, Essential algebraic structure within the AES, CRYPTO (Moti
Yung, ed.), Lecture Notes in Computer Science, vol. 2442, Springer, 2002, pp. 1–16.


