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Abstract. In this paper we study the probability of differentials and
characteristics over 2 rounds of the AES with the objective to under-
stand how the components of the AES round transformation interact in
this respect. We extend and correct the analysis of the differential prop-
erties of the multiplicative inverse in GF(2n) given in [9]. We study the
number of characteristics with EDP > 0 whose probability adds up to
the probability of a differential and derive formulas that allow to produce
a close estimate of this number for any differential. We use the properties
discovered in our study to explain the differentials with the maximum
EDP values and describe the impact of the linear transformation in the
AES S-box in this respect.

1 Introduction

In this paper we study the probability of differentials and characteristics [1,6]
over 2 rounds of the AES where the difference is the bitwise XOR. Bounds on
the expected differential probability (EDP) of characteristics were proven in the
design documentation of Rijndael [2]. Bounds on the EDP of differentials have
been investigated in [3,10,11].

We investigated differential propagation in AES, with the objective to un-
derstand how the components of the AES interact. We explain observed EDP
values, including the maximum over 2 rounds. The EDP value of differentials
is important in the resistance against differential cryptanalysis. In general, the
EDP of differentials over multiple rounds of AES is difficult to compute. In this
paper we have thoroughly investigated the distribution of the EDP of differen-
tials over two rounds of AES, rather than focusing on upper bounds. As far as
we know, this is the first paper that studies the distribution of EDP values in
AES. We believe the results of this paper can be used to obtain tighter bounds
for the EDP over 4 rounds of AES and generally a better understanding of its
distribution.
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In Section 3, we extend and correct the analysis of the differential properties
of the multiplicative inverse in GF(2n) given in [9]. In Section 4 we introduce the
concept of bundles, which are classes of related characteristics contributing to
the same differential. In Section 5 we study the conditions characteristics must
satisfy to have a non-zero EDP. In Section 6 and Section 7 we study the EDP
of bundles, which leads in Section 8 to results on the EDP of differentials. We
discuss the maximum EDP value of [4] in the light of our results in Section 9
and conclude in Section 10. But first we briefly introduce some new terminology
and define notations.

2 AES and Differential Cryptanalysis Basics

2.1 Differentials, Characteristics and Trails

We denote a differential over an arbitrary map by (a, b) and assume that it is
clear from the context which map we mean. We call a the input difference and
b the output difference. The probability of a differential is denoted by DP(a, b).
We define the expected differential probability (EDP) of a differential over a
keyed map as the average of the differential probability DP(a, b) over all keys.
Let B[k] denote a keyed function consisting of a sequence of R transformations
ρi[k]:

B[k](x) = (ρR[k] ◦ · · · ◦ ρ2[k] ◦ ρ1[k])(x), (1)

Then we define a differential trail as follows:

Definition 1. A differential trail through B is a sequence of differences a, b, c,
. . . , z such that there are pairs {x, x ⊕ a} and keys such that

ρ1[k](x) + ρ1[k](x + a) = b

(ρ2[k] ◦ ρ1[k])(x) + (ρ2[k] ◦ ρ1[k])(x + a) = c

. . .

B[k](x) + B[k](x + a) = z.

Hence, a differential trail Q is a characteristic with non-zero expected differential
probability: EDP(Q) > 0. For Markov ciphers, the EDP of a trail Q is the
product of the DP of its S-boxes [6]. A trail Q = (a, b, . . . , e) is in a differential
(f, g) if a = f and e = g. We denote the number of trails in a differential (a, e)
by Nt(a, e). The EDP of a differential is the sum of the the EDP values of all
the trails in that differential

EDP(a, e) =
∑

Q in (a,e)

EDP(Q) . (2)

2.2 The AES Super Box

The AES S-box operates on GF(28) and can be described as

S[x] = L−1(x−1) + q, (3)
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Here x−1 denotes the multiplicative inverse of x in GF(28), extended with 0 being
mapped to 0. L is a linear transformation over GF(2) and q a constant. Note
that L is not linear over GF(28) and can be expressed as a so-called linearized
polynomial [7]. The additive group of the finite field GF(28) forms a vector
space. In the remainder of this paper, we will sometimes tacitly switch from one
representation to another.

For reasons of clarity, we introduce the structure of the (AES) super box (our
notation). The differential probabilities over this structure are equivalent to those
over 2 AES rounds. The AES super box maps a 4-byte array a = [a0, a1, a2, a3]
to a 4-byte array e and takes a 4-byte key k. It consists of the sequence of four
transformations:

SubBytes bi = S[ai] with S the AES S-box
MixColumns c = Mcb with Mc a 4 × 4 matrix
AddRoundKey d = c ⊕ k with k the round key
SubBytes ei = S[di]

If we consider two AES rounds, swap the steps ShiftRows and SubBytes in the
first round, and remove the linear transformations before the first SubBytes
transformation and after the second SubBytes transformation, then we obtain a
map that can also be described as 4 parallel instances of the AES super box.

We can partition the set of 4-byte vectors by considering truncated differences
[5]. All vectors in a given equivalence class have zeroes in the same byte positions
and non-zero values in the other byte positions. An equivalence class is charac-
terized by an activity pattern. The activity pattern has a single bit for each byte
position indicating whether its value must be 0 (passive) or not (active). The
activity pattern of a differential (a, e) is the couple of the activity patterns of a
and e. We say that two differences are compatible if they have the same activity
pattern. Due to the diffusion properties of Mc, activity patterns of differentials
must have a minimum of 5 active positions. In total there are 93 such activity
patterns.

A characteristic through the AES super box consists of a sequence of 5 differ-
ences: a, b, c, d and e. Since the AES S-box is invertible, EDP(a, b) over SubBytes
can be non-zero only if a and b are compatible. Other necessary conditions to
have EDP > 0 are c = d, d = Mcb, and d has to be compatible with e. In
the remaining of this paper we only consider characteristics that satisfy these
conditions (and we will omit c from the notation). Such a characteristic is fully
determined by the differential (a, e) it is in and the intermediate difference b. We
call bi and di corresponding with active S-boxes the inner differences of a char-
acteristic. We make the distinction between trails and characteristics because
the number of trails in a differential is closely related to its EDP.

3 The Multiplicative Inverse in GF(2n)

In this section we discuss the differential properties of the single component
in AES that is non-linear over GF(2): the multiplicative inverse in GF(2n),
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extended with 0 being mapped to 0. In fact this is the operation of raising to
the power 2n − 2. For readability we use the notation x−1 rather than x2n−2.
Hence we adopt the convention that 0−1 = 0. Differential properties of this map
were previously already studied in [9]. In the following, a and b denote arbitrary
non-zero differences. We need the trace map defined over a finite field GF(pn)
with respect to GF(p), denoted by Tr(x):

Tr(x) =
n−1∑

i=0

xpi

(4)

Note that the trace map is linear over GF(p) and that Tr(xpi

) = Tr(x) for
any value of i. The differential (a, b) over the multiplicative inverse map has
DP(a, b) > 0 if and only if the equation

(x + a)−1 + x−1 = b (5)

has solutions. If x = a or x = 0 is a solution of (5), we have b = a−1 and both
are solutions. Otherwise, x = a or x = 0 is not a solution, we can transform (5)
by multiplying with b−1x(x + a) yielding:

x2 + ax + ab−1 = 0,

if we substitute x by a−1y, this becomes:

y2 + y + (ab)−1 = 0, (6)

To investigate the condition for this equation to have solutions we have the
following lemma:

Lemma 1 ([7, Theorem 2.25]). Tr(t) = 0 iff t = zp−z for some z ∈ GF(pn).

If we take p = 2, from this follows easily that:

Lemma 2. For b �= a−1, equation (5) has 2 solutions if Tr((ab)−1) = 0, and
zero solutions otherwise.

Consider now the case b = a−1. Let ν and ν2 denote the elements of GF(2n)
of order 3. Then ν2 + ν = 1 and GF(22) = {0, 1, ν, ν2}. We present now the
following new result:

Lemma 3. For even n, the solutions of

(x + a)−1 + x−1 = a−1 (7)

form the set Ta = {0, a, νa, ν2a}.

Proof. x = a and x = 0 are solutions of (7). Assume there are other solutions.
We can write such a solution as a product of a with an element z different from
0 or 1. We have

(za + a)−1 + (za)−1 = a−1 . (8)
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Or, equivalently,
(z + 1)−1 + z−1 = 1 . (9)

Multiplication with z(z + 1) yields:

z2 + z + 1 = 0 . (10)

According to Lemma 1, Equation (10) has two solutions iff Tr(1) = 0 and none
otherwise. Tr(1) = 0 iff n is even. Since a solution of (10) satisfies z3 = 1, its
solutions are the two elements of GF(2n) of order three. ��
Note that the description of the solutions given in [9]: Ta = {0, a, a1+d, a1+2d}
with d = (2n −1)/3 is only correct if ad �= 1, i.e. if the order of a does not divide
(2n − 1)/3. From these lemmas follow several corollaries.

Corollary 1 ([9]). For odd n,

(x + a)−1 + x−1 = a−1

has two solutions: 0 and a.

Corollary 2. For even n, the possible output differences b for a given input
difference a are those with Tr((ab)−1) = 0 except b = 0. For odd n, the possible
output differences b for a given input difference a are those with Tr((ab)−1) = 0
except b = 0 and extended with b = a−1.

Together with the fact that (5) has 4 solutions only if b = a−1, this leads to the
following corollary:

Corollary 3. For all non-zero c ∈ GF(2n) and for all positive integers t:

DP(a, b) = DP(b, a) = DP(ca, bc−1) = DP(a2t

, b2t

),

4 Bundles

For the EDP of a differential over the AES super box, we have:

EDP(a, e) =
∑

EDP(a, b, Mce) =
∑

b

EDPS(a, b)EDPS(Mcb, e) . (11)

with EDPS(x, y) the EDP of a differential (x, y) over SubBytes. In order to
compute the EDP of a differential, we first determine the number of trails in the
differential. The number of trails is determined by means of bundles, which we
define below. We start with an example.

Example 1. Consider the characteristics in a differential (a, e) with a =
[a0, 0, 0, 0]. Then clearly we must have b = [b0, 0, 0, 0] and thanks to MixColumns
we have d0 = 2b0, d1 = b0, d2 = b0 and d3 = 3b0, or equivalently d = b0[2, 1, 1, 3],
where b0[2, 1, 1, 3] denotes the scalar multiplication of the vector [2, 1, 1, 3] with
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the (non-zero) scalar b0. There are 255 characteristics in the differential, one for
each nonzero value of b0.

This can be generalized to any AES super box differential with 5 active S-
boxes. If Q = (a, b, d, e) and Q′ = (a, b′, d′, e) are two trails of the same differen-
tial with 5 active S-boxes, then there exists a γ such that bi = γb′i, and di = γd′i,
and b, b′.

We define a bundle as follows.

Definition 2. The bundle B(ub) associated with the vector ub, is the set of 255
vectors defined as follows:

B(ub) = {γub|γ ∈ GF(28) and γ �= 0} .

Scalar multiplication doesn’t change the activity pattern of a vector. Further-
more, the linearity of MixColumns over GF(28) implies that Mc(γb) = γ(Mcb).
Hence also the activity pattern of ud = Mcu

b is the same for all vectors ub of
a bundle. If (a, ub, ud, e) is a characteristic through the AES super box, then
(a, b, Mcb, e) is a characteristic through the AES super box ∀b ∈ B(ub). Hence,
the set of characteristics in (a, e) can be partitioned into a number of classes.
Each class contains the 255 characteristics (a, b, Mcb, e) defined by keeping a, e
constant and varying b over all the values of a bundle B(ub). In the following, we
use ‘bundle’ also to refer to such a class of characteristics. A characteristic in the
bundle B(ub) of the differential (a, e) is uniquely identified by the value of γ.

We can count the number of trails in (a, e) by counting the number of trails
in each bundle and adding the results. In the following, we will explain how
the number of trails in a bundle can be counted. As explained in Example 1,
a differential with 5 active S-boxes only has a single bundle of characteristics.
Table 1 lists the activity patterns with 5 active S-boxes and the corresponding

Table 1. Activity patterns with 5 active S-boxes and the corresponding values of
(ub, ud) (in hexadecimal notation)

Activity Pattern ub ud

(1000;1111) [1,0,0,0] [2,1,1,3]
(1100;1110) [1,3,0,0] [7,7,2,0]
(1100;1101) [1,1,0,0] [1,3,0,2]
(1100;1011) [2,1,0,0] [7,0,3,7]
(1100;0111) [3,2,0,0] [0,7,1,7]
(1010;1110) [1,0,3,0] [1,4,7,0]
(1010;0111) [1,0,2,0] [0,7,5,1]
(1110;1010) [1,4,7,0] [9,0,B,0]
(0111;1010) [0,7,5,1] [D,0,E,0]
(1110;1100) [3,7,2,0] [D,B,0,0]
(1101;1100) [1,7,0,2] [9,D,0,0]
(1011;1100) [1,0,1,1] [2,3,0,0]
(0111;1100) [0,7,1,3] [B,E,0,0]
(1111;1000) [E,9,D,B] [1,0,0,0]
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values of (ub, ud). In total there are 56 patterns. They can be derived by rotation
of the 14 patterns listed.

For the bundles of a differential with 6 active positions, the ub values can be
found by taking (almost) all possible combinations of two ub values of bundles
with 5 active positions. For example, for activity pattern (1110; 1110) we combine
the bundles for (1010; 1110) and (0110; 1110) as given by Table 1. This gives
ub = [1, 0, 3, 0] + z[0, 1, 1, 0] = [1, z, 3 + z, 0] and ud = [1, 4, 7, 0] + z[2, 1, 3, 0] =
[1 + 2z, 4 + z, 7 + 3z, 0].

This results in 255 different bundles, one for each nonzero value of z. However,
for ub, ud to have activity pattern (1110; 1110) the value of z must be different
from 3, 1/2, 4 and 7/3, where x/y denotes x.y−1 in GF(28). Hence, a differential
with 6 active S-boxes has 251 bundles. We derive the number of bundles for
differentials with 7 or 8 active S-boxes in Appendix A.

5 Differentials over SubBytes with EDP > 0

A characteristic (a, b, Mcb, e) is a trail if both differentials (a, b) and (Mcb, e) are
differentials with EDP > 0. We will now study the conditions this imposes on
the trails within a bundle.

5.1 Sharp Conditions

Consider differentials over four parallel applications of the multiplicative inverse
in GF(28). We have from Corollary 2:

EDP(x, y) > 0 ⇔
{

Tr((xiyi)−1) = 0
xi �= 0 iff yi �= 0 , 0 ≤ i < 4, (12)

Since the trace map is linear over GF(2), the solution space of Tr(y−1
0 v) = 0

is a vector space of dimension 7 over GF(2). The intersection of Tr(y−1
0 v) = 0

and Tr(y−1
1 v) = 0 is a vector space of dimension 6 or 7. If the dimension is 7,

this implies y0 = y1. In general, the dimension of the intersection of a system of
equations Tr(y−1

j v) = 0 is equal to 8 minus the dimension of the vector space
generated by the elements y−1

j . For example, the solution space of Tr(y−1
0 v) =

Tr(y−1
1 v) = Tr(y−1

2 v) = 0 with y0 �= y1 �= y2 �= y0 has dimension 6 if y2 = y0 +y1
and dimension 5 otherwise.

Consider now a bundle B(u) with u compatible with y. The number of vectors
x in B with EDP(x, y) > 0 equals the number of non-zero values γ for which

Tr((γuiyi)−1) = 0 , 0 ≤ i < 4 . (13)

This can also be written as:

Tr((uiyi)−1γ−1) = 0 , 0 ≤ i < 4 . (14)

The γ−1 values satisfying these four conditions form the vector space orthogonal
to the vector space generated by the set

Vi = {(u0y0)−1, (u1y1)−1, (u2y2)−1, (u3y3)−1} . (15)
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The number of non-zero solutions equals 28−α − 1, where α is the dimension
of Vi. Hence, in one bundle, there can be 127, 63, 31 or 15 vectors x with
EDP(x, y) > 0. Exactly the same analysis can be performed when x is fixed and
we want to determine the number of y values in a bundle with EDP(x, y) > 0.
We call (14) the sharp conditions on trails.

5.2 Blurred Conditions

If we consider differentials over SubBytes then we have to take into account the
effect of the linear transformation L in the AES S-box. In order to determine
the number of input differences x compatible to a fixed output difference y, it
suffices to replace Vi by

Va = {(u0L(y0))−1, (u1L(y1))−1, (u2L(y2))−1, (u3L(y3))−1} . (16)

However, when determining the number of output differences y compatible with
a fixed input difference x, (13) becomes:

Tr((xiL(γui))−1) = 0 , 0 ≤ i < 4 , (17)

which can’t be easily reworked and are harder to analyse. Therefore we call these
conditions the blurred conditions.

6 Number of Trails in a Bundle

The number of trails in a bundle B(ub) for a given differential (a, e) is now
the number of γ values that satisfy the sharp conditions due to (γud, e) over
SubBytes and the blurred conditions due to (a, γub) over SubBytes. In this
section we first derive formulas to estimate the number of trails in B(ub) for the
special case of a differential with one active S-box in the first round followed by
formulas and a discussion for the general case.

6.1 Bundles with One Active S-Box in the First Round

Consider a differential (a, e) with activity pattern (1000; 1111). There is a single
bundle B(ub) with ub = [1, 0, 0, 0] and ud = [2, 1, 1, 3]. The sharp conditions
become:

Tr((2L(e0))−1γ−1) = 0
Tr((L(e1))−1γ−1) = 0
Tr((L(e2))−1γ−1) = 0

Tr((3L(e3))−1γ−1) = 0 .

If e = [L−1(z/2), L−1(z), L−1(z), L−1(z/3)] for any nonzero value z, then Va =
{z−1} resulting in α = 1 and hence there are 127 trails satisfying the sharp
conditions.
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The effect of the blurred condition can be modeled as a sampling process.
The space sampled are the 255 vectors of B(u). 127 out of the 255 vectors may
satisfy the blurred condition. These are called the good ones, the 128 others the
bad ones. The joint sharp conditions take a sample with size 28−α − 1. This
gives rise to a hypergeometric distribution H(Nt; n, m, N) [8] with the following
parameters:

– Number of ways for a good selection n = 127.
– Number of ways for a bad selection m = 255 − 127 = 128.
– Sample size N : 28−α − 1.

Denoting the event that one vector is compatible (the outcome of a single sam-
pling) by xi, we obtain E [xi] = n/(m + n). Since Nt =

∑
i xi,

E [Nt] =
n

m + n
N =

127
255

(28−α − 1).

This gives formula (18). For the variance, we obtain:

σ2(Nt) =
mnN(m + n − N)

(m + n)2(m + n − 1)
=

128 × 127(28−α − 1)(256 − 28−α)
2552254

,

which corresponds to (19). The exact distributions of the number of trails per
differential for all four values of α are given in Appendix C.

6.2 Any Bundle

Every differential (a, e) imposes on γ a number of sharp conditions, determined
by e and ud, and a number of blurred conditions, determined by a and ub.
Following (16), the sharp conditions state that γ−1 has to be orthogonal to

Va = {v0, v1, v2, v3},

with v−1
i = ud

iL(ei). The parameter α is defined as the dimension of Va. Hence
γ−1 is in a vector space of dimension 8 − α ranging from 4 to 7.

The number of blurred conditions is denoted by β, and given by the number
of different non-zero elements in the following set of couples:

{(a0, u
b
0), (a1, u

b
1), (a2, u

b
2), (a3, u

b
3)}.

For the vast majority of differentials, β equals the number of active S-boxes in
a. β is smaller only when two ai values are the same and the corresponding ui

in the bundle are also equal. Hence a reduction of β occurs much less often than
a reduction of α. Both α and β range from 1 to 4 limited by α + β ≤ 5.

The number of trails in the bundle B(ub) can be described as a stochastic
variable with the expected value and variance given by:

E [Nt] =
(

127
255

)β

(28−α − 1) , (18)
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σ2(Nt) = E [Nt] ×
[
1 −

(
127
255

)β

+ (28−α − 2)

((
63
127

)β

−
(

127
255

)β
)]

. (19)

We give a derivation for (18) and (19) in Appendix B. The numerical values
computed with these formulae are given in Table 2. We have conducted a large
number of experiments that confirm the mean and variance predicted by (18)
and (19) for any combination of α and β.

Table 2. Mean (left) and variance (right) of the number of trails for a differential given
α and β

α, β 1 2 3 4
1 63.25 31.50 15.69 7.81
2 31.38 15.63 7.78 3.88
3 15.44 7.69 3.83 1.91
4 7.47 3.72 1.85 0.92

α, β 1 2 3 4
1 16.00 15.89 10.86 6.38
2 11.91 9.85 6.11 3.40
3 6.83 5.33 3.19 1.73
4 3.54 2.70 1.59 0.85

7 EDP of a Bundle

The distributions for the number of trails in a bundle can be converted to distri-
butions of the EDP of a bundle by taking into account the EDP of the trails. The
EDP of a trail is the product of the DP values of its active S-box differentials. If
we apply Section 3 to the AES S-box, we see that for an S-box differential with
given input (output) difference, there are 126 output (input) differences with DP
= 2−7 and a single output (input) difference with DP = 2−6 = 2 × 2−7. We call
the latter double differentials. It follows that the EDP of a trail is 2i2−7ν with
ν the number of active S-boxes and i the number of double S-box differentials.
One could say that the presence of i double S-box differentials multiplies the
EDP of the trail by a factor 2i.

Let (a, b, d, e) be a characteristic in a bundle B(ub) of a differential (a, b),
determined by γ. A characteristic has a double S-box differential in the i-th
S-box of the first round if and only if

bi = L−1(ai
−1) ⇔ γ = (ub

i)
−1

L−1(ai
−1). (20)

The condition for a double S-box differential in the second round is:

dj = L(ej)
−1 ⇔ γ = (ud

jL(ej))
−1

. (21)

Hence each double S-box differential occurs in exactly one characteristic of the
bundle. Two observations can be made here.

Multiple solutions: If a solution of the equations in (20) and (21) is a mul-
tiple solution, then the corresponding characteristic (potentially) has a higher
EDP. Consider for example a differential with 5 active S-boxes. There are seven
different cases, of which the two extremes are:
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‘Poker’: the double differentials are all in the same characteristic,
‘No Pair’: the double differentials occur in 5 different characteristics,

The other five cases are ‘One Pair’, ‘Two Pairs’, ‘Three of a Kind’, ‘Full House’
and ‘Four of a Kind’. The occurrence of these cases is related to the values of α
and β. The number of different solutions for (21) equals the number of different
elements in Va. If α is 1 or 4, this number is equal to α. If α is 2 or 3 and the
number of active S-boxes in e is higher than α, the number of solutions can also
be α + 1. The number of solutions for (21) usually equals β, but it can also be
smaller. For a given input difference a there can be at most one output difference
e for which all double S-box differentials are in the same trail.

Occurrence in trails: The solutions of (20) and (21) still have to satisfy the
remaining sharp conditions and blurred conditions in order to have an EDP > 0.
Clearly, the expected number of characteristics satisfying the remaining condi-
tions decreases when there are more conditions, i.e. when α and β increase.
A ‘Poker’ characteristic, i.e. one in which the S-box differentials of all active
S-boxes are double differentials, is always a trail.

7.1 How L Can Make a Difference

If we remove L from the S-box, the set of blurred conditions is replaced by a
second set of sharp conditions. The number of trails in a bundle is then given
by 28−α − 1, with 1 ≤ α < 8. The maximum EDP occurs for differentials with
5 active S-boxes and α = 1. There are 56 × 255 such differentials in the super
box. For these, the double S-box differentials are in the same trail and hence the
EDP is equal to 25 × 2−35 + 126 × 2−35 = 19.75 × 2−32, where for AES this is
13.25 × 2−32 [4].

8 Nt and EDP of a Differential

Differentials with 5 active S-boxes contain only a single bundle, hence they are
covered by the previous sections. For differentials with more active S-boxes,
there are more bundles. Given a differential (a, e), we can compute for each of
its bundles the value of (α, β). With α and β we can compute the mean number of
trails in the bundle and the variance. The mean number of trails in a differential
is the sum of the mean number of trails in these bundles. For the variance of the
number of trails, the sum of the variances in the bundles gives a good idea.

The value of the differences a and e determine the distribution of α and β over
the different bundles in the differential (a, e). As the number of active S-boxes
grows, the analysis becomes more and more involved. Therefore we start with
an example.

8.1 Differentials with Activity Pattern (1110; 1110)

There are in total 251 bundles with activity pattern (1110; 1110). The distribu-
tion of α over the 251 bundles in (a, e) is completely determined by e, or more
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Table 3. Distribution of α for differentials with activity pattern (1110; 1110)

α distribution # couples mean standard deviation
α = 3 α = 2 α = 1 (L(e1)/L(e0), L(e2)/L(e0)) theory exp.
250 1 0 21 965.2 28.42 25.65
249 2 0 1501 969.1 28.47 25.14
248 3 0 31170 973.1 28.53 25.15
247 4 0 2175 977.0 28.58 25.16
246 5 0 29907 981.0 28.63 25.23
250 0 1 3 973.1 28.42 23.28
249 1 1 248 977.0 28.47 25.01

specifically, by the couple (L(e1)/L(e0), L(e2)/L(e0)). Table 3 lists the seven
distributions that are possible and gives for each of them the number of output
differences e for which they occur.

The distribution of β depends on the values of a0, a1 and a2. If they are
three different values, then β is always equal to 3. For this case, Table 3 gives
the theoretical mean and standard deviation of the number of trails (assuming
independence between the bundles). If two of the values a0, a1 and a2 are equal,
then β will be 2 for at most one bundle and 3 for all other bundles. If they are
all three equal, then either β will be 2 for at most three bundles, or β will be 1
for at most one bundle and 3 for all the other bundles.

In principle, the distributions for α and β combine to a two-dimensional dis-
tribution. In the worst case, the small values of β occur in bundles with a small
value of α. All in all, there are only few bundles where β is smaller than 3, hence
we can approximate by working with β = 3 for all bundles.

We have experimentally verified this theory by computing the number of trails
for a large set of differentials with 6, 7 and 8 active S-boxes. The measured mean
values coincide with the theoretically predicted values. The measured standard
deviations, also listed in Table 3 are systematically smaller than the theoretical
ones, implying that the number of trails in the bundles of a differential are not
independent.

8.2 A Bound on the Multiplicity

In Section 4 we have shown that the bundles with activity pattern (1110; 1110)
can be enumerated by ub = [1, z, 3 + z, 0] and ud = [1 + 2z, 4 + z, 7 + 3z, 0] with
z different from 0, 3, 1/2, 4 and 7/3.

Lemma 4. If two double S-box differentials occur in the same characteristic
of one bundle with activity pattern (1110; 1110), then they occur in different
characteristics for the 250 other bundles with the same activity pattern.

Proof. Assume we have a bundle where the double differential in the first and
the second S-box of the second round occur in the same characteristic. Then we
have from (21):

((1 + 2z)L(e1))−1 = ((4 + 7z)L(e2))−1 .
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This equation is linear in z and has at most one solution. Hence the double
differentials can’t be in the same characteristic for any other bundle. The same
holds for any other pair of active S-box positions. ��

The expected contribution of the double S-box differentials to the EDP of a
differential is maximum when there is a bundle in which they are all 6 in the same
trail. This trail contributes 64 × 2−42 to the EDP of the differential. Lemma 4
implies that in the remaining 250 bundles, there can be no trails with more
than one double S-box differential. Hence each of these bundles will contribute
at most (Nt + min(6, Nt))2−42 to the EDP of the differential. On the average
the presence of the double S-box differentials makes the contribution of these
trails only rise from Nt2−42 for the hypothetical case where no double S-box
differentials exist to (132/127)Nt2−42.

We conclude that for this type of differential, the distribution of the EDP
values is much more centered around its mean value than is the case for differen-
tials with 5 active S-boxes. This is mainly due to the fact that the distribution
of the EDP of the differential is the convolution of the distributions of many
bundles. Moreover, Lemma 4 implies that the different bundles compensate for
one another.

The same phenomena can be observed for the other types of differentials with
6 active S-boxes. For differentials with 7 or 8 active S-boxes the average numbers
of trails are even much higher and the EDP values much smaller. Furthermore,
the individual trails have all very small EDP values. This all makes that the
EDP values of differentials with 6 or more active S-boxes have a very narrow
distribution.

9 Differentials with the Maximum EDP Value

The maximum EDP value obtained in [4] occurs for exactly 12 differentials over
the AES super box. Due to the rotational symmetry of the AES super box,
they come in 3 sets, where the differentials in a set are just rotated versions of
each other. It is no surprise that they are differentials with 5 active S-boxes,
where the deviations from the average value 2−32 are largest. Moreover, they
have α = 1 and β = 1 for which the expected number of trails is the highest over
all differentials with 5 active S-boxes, as is clear from Figure 1 in Appendix C.
The differentials are the following:

(
[x, 0, 0, 0], [L−1(y/2), L−1(y), L−1(y), L−1(y/3)]

)
,(

[x, x, 0, 0], [L−1(y), L−1(y/3), 0, L−1(y/2)]
)
,(

[x, x, x, 0], [0, 0, L−1(y/2), L−1(y/3)]
)
,

with x = 75x and y = 41x. For these differentials, the number of trails is 75: 74
trails with EDP 2−35 and one with EDP 2−30, resulting in EDP value 2−30 +
74 × 2−35 = 13.25 × 2−32. Clearly all five double S-box differentials are in the
same trail. Note that there are differentials with 5 active S-boxes that have 82
trails (see Appendix C) but these have a lower EDP value due to the fact that
the double S-box differentials are not in the same trail.
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To prove the correctness of the maximum EDP value, [4] uses so-called 5-lists,
a concept similar to, but different from, the bundles defined in this paper. Both
bundles and 5-lists group sets of 255 b-differences. Bundles with 5 active S-boxes
correspond with the 5-lists of type 1. In bundles with more than 5 active S-boxes
the ratios between the inner differences are fixed, while in 5-lists of type 2, a
number of inner differences are fixed. Their goal is also different: the concept of
5-lists helps in efficiently finding bounds, while bundles help to gain insight in
the distribution of trails in differentials.

10 Conclusions and Future Work

The AES super box can be compared with an idealized keyed 32-bit map which is
constructed as a family of 232 randomly selected permutations (one permutation
for each value of the key). In this idealized model, the distribution of the EDP
over all differentials (a, b) with both a and b different from zero has a normal
distribution with expected value 2−32 and standard deviation 2−47.5.

The AES super box differentials deviate from the idealized model: differentials
with 4 or less active S-boxes have EDP = 0, and differentials with 5 active S-
boxes can have EDP values as large as 13.25×2−32 [4]. Our results on differentials
with 6 active S-boxes indicate that for differentials with 6 or more active S-boxes
the distribution of the EDP is very narrowly centered around 2−32. Further
analysis can lead to strict bounds.

It is a well known fact that the linear transformation L in the AES S-box
doesn’t influence the EDP of S-box differentials and the bounds on the EDP of
trails as proven in [2]. Our results explain how the presence of L influences the
EDP of two-round differentials.

Bounds on the EDP of two-round differentials can be used to derive bounds on
the EDP of four-round differentials [3]. The results of our paper allow to describe
the full distribution of the EDP of two-round differentials. We expect that this
information can be used to derive sharper bounds on the EDP of four-round
differentials.
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A Number of Bundles per Differential

The total number of nonzero vectors of 4 bytes is 232 − 1. Each bundle groups
255 such vectors, so the total number of bundles is

232 − 1
28 − 1

= 224 + 216 + 28 + 1 .

The number of bundles with a given activity pattern is determined by the number
of active S-boxes in the activity pattern. If we denote the number of bundles for
an activity pattern with x active S-boxes by BN(x), we have:

BN(5) = 1
BN(6) = 255 − 4BN(5) = 251
BN(7) = 2552 − 4BN(6) − 6BN(5) = 64015
BN(8) = 2553 − 4BN(7) − 6BN(6) − 4BN(5) = 16323805

The number of trails with i active S-boxes is
(

8
i

)
255BN(i)127i .

The total number of trails is 2.8 × 1026.

B Derivation of (18) and (19)

Assuming that the blurred conditions are independent, we can generalize the
sampling model introduced in Section 6.1. The space sampled is now the set of
β-component vectors where each of the components can take any nonzero value
in GF(28). There are 255β such vectors. A good selection is one in which the
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first component satisfies the first condition, the second component satisfies the
second condition and so on. There are 127β such vectors. Denoting by xit the
event that characteristic i satisfies condition t, we obtain:

E [Nt] =
N∑

i=1

E [xi] =
N∑

i=1

E [xi1] E [xi2] · · · E [xiβ ] = N

(
n

n + m

)β

The variance satisfies

σ2(Nt) =
N∑

i=1

σ2(xi) +
N∑

i=1

N∑

j=1
j �=i

Cov(xi, xj).

Since xi takes only the values 0, 1, it is a Bernoulli variable, and

σ2(xi) = E [xi] (1 − E [xi]) (22)
Cov(xi, xj) = E [xixj ] − E [xi] E [xj ] (23)

E [xi] =
(

n

n + m

)β

. (24)

Since two trails of the same bundle differ in the value of each of their components,
we have:

E [xixj ] =
(

n(n − 1)
(n + m)(n + m − 1)

)β

. (25)

Putting everything together results in (19).

C Distributions of the Number of Trails per Differential

We have experimentally verified the distributions of the number of trails per
differential for all 16 combinations of α and β. For the combination of (α, β)
equal to (1, 1), (2, 1), (3, 1), (4, 1) and (1, 2) we were able to do this exhaustively,
covering all possible cases. As a side result we found for these values of (α, β) the
minimum and maximum values for the number of trails per differential, listed in
Table 4.

Table 4. Minimum and maximum number of trails in differentials with 5 active S-boxes
given (α, β)

(α, β) minimum maximum
(1, 1) 48 82
(2, 1) 14 48
(3, 1) 3 29
(4, 1) 0 15
(1, 2) 10 56
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For the other values of (α, β), the number of combinations becomes too large
to compute exhaustively. Still, our sampling experiments confirm the shape pre-
dicted by formulas (18) and (19). As α and β grow, the mean and variance of the
distributions shrink. Clearly, the majority of differentials with 5 active S-boxes
and α = 1 and β = 1 have more trails than any differential with 5 active S-boxes
where α+β has a higher value. Figure 1 depicts the four distributions for β = 1
on a logarithmic scale. The distributions appear as slightly skewed parabolas,
which is the typical shape of hypergeometric distributions.
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1.E-01

1.E+00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Fig. 1. Distributions of the number of trails per differential for β = 1 and for α ranging
from 4 (leftmost) to 1 (rightmost)


	Introduction
	AES and Differential Cryptanalysis Basics
	Differentials, Characteristics and Trails
	The AES Super Box

	The Multiplicative Inverse in GF(2$^n$)
	Bundles
	Differentials over SubBytes with EDP > 0
	Sharp Conditions
	Blurred Conditions

	Number of Trails in a Bundle
	Bundles with One Active S-Box in the First Round
	Any Bundle

	EDP of a Bundle
	How $L$ Can Make a Difference

	Nt and EDP of a Differential
	Differentials with Activity Pattern (1110;1110)
	A Bound on the Multiplicity

	Differentials with the Maximum EDP Value
	Conclusions and Future Work
	Number of Bundles per Differential
	Derivation of (18) and (19)
	Distributions of the Number of Trails per Differential


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




