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Abstract. We study the probability distributions of difference propagation probabilities and input-
output correlations for functions and block ciphers of given dimensions, for several of them for the
first time. We show that these parameters have distributions that are well-studied in the field of
probability such as the normal, Poisson and extreme value distributions. The results of this paper
can be used to estimate how much effort will be required to generate functions satisfying certain
criteria. The distributions we derive for block ciphers illustrate the significant difference between
fixed-key parameters and averaged parameters.
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1 Introduction

Differential and linear cryptanalysis are the two most powerful general purpose cryp-
tographic attacks known to date. In this section, we briefly review both attacks and
motivate our work.

1.1 Differential and linear cryptanalysis

In their basic form, both attacks retrieve key information from the lastroundby ana-
lyzing (large) amounts of plaintext/ciphertext pairs. The key information acquired is
then used to find even more key bits until the full key is found.
Differential cryptanalysis is a chosen-plaintext attack where plaintexts are applied in
pairs that have a fixed difference [1]. The attack exploits the non-uniformity in the
distribution of differences in the outputs of a mapα, when pairs of inputs with a fixed
difference are applied. The non-uniformity exploited can be a differential with a high
probability, or, for more advanced versions of the attack, a differential with probability
zero, or a combination of differentials with a high probability.
In a first type of differential attack,α equals the block cipher. The information on the
ciphertext (output) pairs and plaintext (input) pairs is used to derive information on the
key (input). If the distribution of output differences has a large peak with valueP ,
the amount of plaintext/ciphertext pairs for the attack to be successful is proportional
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to P−1. P is called thedifferential probability (DP). In a second type of differential
attack,α is only a part of the block cipher. The mapα is selected in such a way
that its inputs and outputs can be computed from the plaintext and ciphertext and a
‘small’ number of key bits (typically 10 to 20 key bits). As in the first type of attack,
the required amount of plaintext/ciphertext pairs is proportional toDP−1. In general,
DP depends on the key. Hence, the probability of success given a certain amount
of plaintext/ciphertext pairs is key-dependent. Often one approximates theDP of a
differential by the average of theDP over all keys, called the expectedDP (EDP).
Linear cryptanalysis is a known-plaintext attack [15]. It exploits the correlation be-
tween linear combinations of input bits and linear combinations of output bits of a
non-linear mapα. In a first type of linear attack,α equals the block cipher. The infor-
mation on the ciphertext (output) and the plaintext (input) is used to derive information
on the key (input). If the correlation between input and output equalsC, the required
amount of known plaintexts is proportional toC−2. In a second type of linear attack,
α is only a part of the block cipher. The mapα is selected in such a way that its inputs
and outputs can be computed from the plaintext and ciphertext and a ‘small’ number
of key bits (typically 10 to 20 key bits). If there is a linear combination of input bits
and output bits ofα that correlate to zero with a correlation valueC while all other
linear combinations have a negligible correlation, then it is possible to recover the key
bits involved in the computation. In this attack the required amount of known plaintext
for the attack to be successful is proportional toC−2. The quantityC2 is generally de-
noted by the termlinear probability(LP). In general, LP depends on the key and hence
the probability of success given a certain amount of known plaintext is key-dependent.
Often one approximates theLP of an approximation by the average of theLP over all
keys, called the expectedLP (EDP).

1.2 Motivation

We study the distributions ofDP of differentials andLP of linear approximations over
all possible vector Boolean functions and permutations maps with given dimensions.
We also study the distributions of theEDP of differentials andELP of hulls over block
ciphers. Finally we characterize the distributions of the maximum of these properties
over all differentials or approximations of a given mapping.
Cipher designers sometimes try to reduce the risk for undesired structural properties
by including randomly generated substitution tables, or S-boxes, see e.g. [2, 3].
These S-boxes need to satisfy criteria on theDP andLP. The distributions we derive
here allow to estimate the expected number of S-boxes that need to be generated —and
hence the work factor— before one will satisfy the chosen criteria.
The results of this paper show what we can expect to achieve for the distribution of
EDP andDP over all the differentials. We show that the distribution of theEDP stays
very close to2−n for all differentials, while theDP values can deviate significantly.
Similar conclusions hold for theELP andLP values.
Our results are complementary to earlier work by O’Connor et al. about the DP and LP
distributions of fixed maps [6, 17, 18]. We additionally consider key-dependent maps
and give the distributions of DP and LP values averaged over all keys.
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1.3 Overview

The remainder of this paper is organized as follows. After introducing vector Boolean
functions, permutations, block ciphers and probability distributions in Section 2, we
study the distributions of DP and EDP in Section 3 and the distribution of correlation,
LP and ELP in Section 4. In Section 5 we study the distribution of the maximum car-
dinality and EDP over many differentials, the maximum LP over many approximations
and the maximum ELP over many hulls. This is followed by a note on the applica-
bility of our results on difference operations other than the bitwise XOR in Section 6.
Section 7 contains the conclusions, Appendix A lists the probability distributions we
encounter in this paper.

2 Preliminaries

A Boolean vectoris a vector with bits as coordinates. Thebitwise binary addition
of two Boolean vectorsa and b of the same dimension is a Boolean vector whose
coordinates consist of the binary addition (addition modulo 2) of the corresponding
bits ofa andb. We denote this operation by+.
A Boolean functionb = f(a) is a function that maps a Boolean vector to a bit.

f : GF(2)n → GF(2) : a 7→ b = f(a) . (2.1)

The imbalanceImb(f) of a Boolean functionf is the number of inputs that it maps to
0 minus the number of inputs that it maps to1 divided by two. The imbalance can have
any integer value and ranges from−2n−1 to 2n−1. We have:

Imb(f) =
1
2

(# {a|f(a) = 0} −# {a|f(a) = 1}) . (2.2)

A Boolean function with imbalance 0 is calledbalanced.
A vector Boolean functionb = α(a) is a function that maps a Boolean vector to another
Boolean vector:

α : GF(2)n → GF(2)m : a 7→ b = α(a) . (2.3)

This vector Boolean function hasn input bits andm output bits. A vector Boolean
function can be specified by itsdefinition table: an array containing the output value
for each of the2n possible input values.
Each bit of the output of a vector Boolean function is itself a Boolean function of
the input vector. These are thecoordinate Boolean functionsof the vector Boolean
function.
A vector Boolean transformationis a vector Boolean function with the same number of
input bits as output bits. Avector Boolean permutationis an invertible vector Boolean
transformation and maps all input values to different output values.
There are2m2n

n-bit to m-bit vector Boolean functions. In the following, we will
study for certain properties the distribution over all vector Boolean functions. The
probability space is formed by the2m2n

n-bit to m-bit vector Boolean functions, where
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each function has the same probability to occur. We will also study the distributions
over the2n! differentn-bit permutations.
A block cipherB with block lengthn and key lengthh is an array of2h vector Boolean
permutations operating onn-bit Boolean vectors. Each key valuek determines a vector
Boolean permutation denoted byB[k]. We also refer toB[k] as afixed-key (block)
cipher. The probability space of block ciphers with block lengthn and key length
h is the set of(2n!)2

h

samples of size2h that can be drawn from the space ofn-bit
permutations.
All distributions in this paper are discrete. In most cases the variable can take only
values that are integer multiples of some valueε. We denote the probability that a
given discrete variableX has valuex by Pr(X = x). The cumulative distribution of
such a variable is given by

D(x) = Pr(X < x) = Pr(X = x− ε) + D(x− ε).

In several cases we can approximate the distribution of a discrete variable by a con-
tinuous distribution. For a continuous distribution we similarly have a cumulative
distributionD(x) = Pr(X < x). Due to the continuous nature, in general we have
Pr(X = x) = 0. Instead we have a density functionPX(x) = dD(x)

dx . If a the distribu-
tion of a discrete variable is approximated by a continuous distribution, we have:

Pr(X = x) ≈ εPX(x)

and
Pr(X < x) ≈ D(x− ε/2)

This is known as thecontinuity correction[9]. Given a discrete variableX with ε = e
and densityPX(x), a variableY = aX with a some constant hasε = ae. The density
PY (y) = PX(y/a)/a asPr(Y = y) = Pr(X = y/a) and henceeaPY (y) = ePX(y/a).
Appendix A lists some well-known distributions that we will use in this paper.

3 Differential probability (DP) values

In this section we study the distributions related to the DP of differentials in vector
Boolean functions, permutations and block ciphers.

3.1 Terminology related to differentials

A pair is an unordered set of two Boolean vectors of the same dimension:{v, u} =
{u, v}. Thedifference of a pairis a Boolean vector with valueu + v, where+ denotes
the bitwise difference or XOR. In the context of difference propagation in a vector
Boolean functionα, we speak of aninput differenceof a pair of vectors{v, u} and of
its output differenceα(u) + α(v). For a givenn, there are2n − 1 possible non-zero
input differences. For each non-zero input difference, there are2n−1 pairs with that
input difference.
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A a vector Boolean function differential, or differential for short, consists of an input
differencea and an output differenceb and is denoted by(a, b). Thedifferential prob-
ability (DP) of the differential(a, b) is given by the number of pairs that have input
differencea and output differenceb, divided by the total number of pairs with input
differencea:

DP(a, b) = # {{v, u}|v + u = a andα(v) + α(u) = b} /2n−1 (3.1)

Note that the differential probability of a vector Boolean function differential can take
only a limited number of values: it is either zero or a multiple of21−n. In the following,
we will study the distribution ofDP(a, b), where the probability space is formed by the
2m2n

n-bit to m-bit vector Boolean functions. HenceDP(a, b) becomes a stochastic
variable.
It is often more convenient to work with thecardinalityof the differential, because this
term avoids confusion between the stochastic variableDP(a, b) and its probability dis-
tribution. Furthermore, using the term cardinality, we emphasize the discrete character
of this quantity.

Definition 3.1. The cardinality of a vector Boolean function differentialN(a, b) is the
number of pairs with input differencea that have output differenceb.

N(a, b) = # {{v, u}|v + u = a andα(v) + α(u) = b} . (3.2)

Hence the cardinality equals the DP times2n−1. An impossible differentialis a differ-
ential with DP (or cardinality) equal to 0.
A differential with an input difference equal to0 also has output difference0 and is
called atrivial differential. The trivial differential has differential probability 1 and
cardinality2n−1. For a permutation, all differentials(a, 0) with a 6= 0 are impossible
differentials. The only possible differential of the form(a, 0) is the trivial differential.
In the remainder of this document we will use the term differential to mean nontrivial
differential.
We call the cardinality of a differential over a block cipher where the key is fixed to
a specific value afixed-key cardinalityof a differential over that block cipher. Since a
block cipher where the key is fixed, is simply a permutation, the fixed-key cardinality
of a differential over a block cipher has the same distribution as the cardinality of
a permutation (both are the same stochastic variable). We denote it by the symbol
N [k](a, b).
We define a second type of differential over a block cipher.

Definition 3.2. A block cipher differential(a, b) over the block cipherB is the combi-
nation of all vector Boolean function differentials(a, b) over the permutations defined
by the fixed-key block ciphers. TheEDPof a block cipher differential is defined as the
sum over all keys of the fixed-key cardinalities of the differential(a, b), divided by the
number of possible keys and the number of pairs with input differencea:

EDP(a, b) = 21−n−h
∑

k

N [k](a, b) .
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The explicit distinction between vector Boolean function differentials and DP on the
one hand, and block cipher differentials and EDP on the other hand, may seem artificial
at first. However, the analysis in Sections 3.2 and 3.3 will show that the distributions
of the and theEDP are quite different from one another. Therefore we think it is useful
to explicitly make the distinction.

3.2 The cardinality of a differential

The cardinality of a vector Boolean function differential is determined as follows.

Lemma 3.3. For a vector Boolean function differential(a, b) with fixeda and b, the
distribution of the cardinalityN(a, b) over all n-bit to m-bit vector Boolean functions
is binomial:

Pr (N(a, b) = i) =
(
2−m

)i (
1− 2−m

)2n−1−i
(

2n−1

i

)
.

Proof. Over all choices of the vector Boolean functionα, each of the2n input valuesv
is mapped to each of the2m output valuesw equally many times. Hence the difference
α(v)+α(v +a) takes each value equally many times. Given(a, b), taking a pair with a
differencea is an experiment that is successful if the output difference isb. The number
of experiments (pairs) is2n−1 and the probability of success is2−m. The number of
successes has the binomial distribution.

The binomial distribution is often approximated by a Poisson distribution or a normal
distribution. Both approximations improve asn grows.

Corollary 3.4. If m is small, we have:

Pr(N(a, b) = i) ≈ Z

(
i− 2n−m−1

√
2n−m−1(1− 2−m)

)
.

with Z () denoting a normal distribution (see Appendix A).

Theorem 3.5. For n ≥ 5 andn−m small, we have (see Appendix A):

Pr (N(a, b) = i) ≈ e−2n−m−1 2(n−m−1)i

i!
= Poisson(i; 2n−m−1) .

For Boolean functions we havem = 1 and hence the cardinalityN(a, b) has a distribu-
tion close to a normal distribution withµ(N) = 2n−2 andσ2(N) = 2n−3.

Corollary 3.6. Over the Boolean transformations, the cardinality has the following
distribution:

Pr (N(a, b) = i) ≈ Poisson(i;
1
2
) =

e−
1
2

i!2i
.
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The entries in the definition table of a permutation are not independent from one an-
other. Taking this restriction into account would strongly complicate the analysis. For-
tunately, the case of permutations was rigorously studied and described in [17, 6]. It
turns out that in the computation of the distribution it is sufficient to replace the proba-
bility of success by1/(2n− 1) for nonzero output differencesb and by 0 forb = 0. For
largen this has a negligible effect on the cardinality of differentials(a, b) with b 6= 0
and hence Corollary 3.6 for transformations is also valid for permutations.

3.3 EDP of block cipher differentials

The distribution of the EDP of a block cipher differential looks quite different:

Theorem 3.7. The continuous approximation of the distribution over all block ciphers
of the EDP of a block cipher differential has a density which is very close to a normal
density with meanµ(EDP) = 2−n and standard deviationσ(EDP) = 2−n2(1−h)/2.
The values with non-zero probability in the discrete distribution are the multiples of
ε = 21−n−h.

Proof. The EDP of a block cipher differential is determined by the sum of2h indepen-
dent variables. For all reasonable values ofh, 2h is large enough to invoke the central
limit theorem. The individual variables have the distribution of Corollary 3.6, i.e. with
mean2−1 and variance2−1 resulting in mean and variance both equal to21−h for the
sum, resulting in a standard deviation of2(1−h)/2. Division by2h+n−1 yields the mean
and standard deviation for the EDP.

We conclude that the distribution of the EDP differs significantly from zero only for
values extremely close to the mean value2−n, in contrast to the distribution of the DP.
In the remainder of this paper, we will abbreviate statements similar to Theorem 3.7
by writing: The density function of the EDP of a block cipher differential has a normal
shape with mean2−n and variance2−2n21−h. The distribution hasε = 21−n−h.

4 Correlation and LP values

In this section we study the distributions of correlation and LP of linear approximations
over vector Boolean functions, permutations and block ciphers.

4.1 Terminology related to correlation

A parity of a Boolean vector is a binary Boolean function that consists of the binary
addition of a number of its coordinates. A parity is determined by the indices of the
bits of the Boolean vector that are included in the binary addition.
Theselection vectoru of a parity is a Boolean vector that has a1 in the bit positions
that are included in the parity and a0 in all other positions. Analogously to the inner
product of vectors in linear algebra, we express the parity of vectora corresponding
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with selection vectoru asuTa. In this expression the T suffix denotes transposition of
the vectoru.
A vector Boolean function(linear) approximationα consists of ann-bit input selection
vectorv and anm-bit output selection vectoru and is denoted by(v, u). An approx-
imation with both the input selection vector and the output selection vector equal to0
is called atrivial approximation. The imbalanceImb(v, u) of an approximation(v, u)
over a functionα is the imbalance of the Boolean function given by:

vTa + uTα(a) .

Thecorrelationof an approximation is its imbalance divided by2n−1:

C(v, u) = Imb(v, u)/2n−1 = 21−n × Imb(v, u) . (4.1)

The correlation ranges from−1 to +1. A correlation with value−1 means that the
parities defined byv andu are each others complement and value+1 means that they
are equal. Several authors work with thebias [15]. The bias of an approximation is
its correlation divided by two. We prefer to follow here the terminology of e.g. [16]
and work with the correlation. By working with correlation, we avoid the Piling-Up
Lemma and eliminate factors2i that appear in equations when using bias [15]. Further-
more, the quantity denoted here by correlation, corresponds exactly to the definition of
correlation in other fields of mathematics, e.g. probability theory [7].
The linear probability (or ratherpotential) (LP) of an approximationLP(v, u) is the
square of its correlation and ranges from 0 to 1. We call an approximation with zero
correlation animpossible approximation. It is well known, see e.g. [4], that for any
vector Boolean function and for allu:

∑
v

LP(v, u) = 1 . (4.2)

The approximation with output selection vector0 and input selection vector0 is the
only possibletrivial approximation. It has imbalance2n−1 and correlation 1. Ap-
proximations(v, 0) with v 6= 0 are impossible approximations. For permutations, all
approximations(0, u) with u 6= 0 are also impossible approximations. The correla-
tion of an approximation over ann-bit permutation is an integer multiple of2n−2. In
the remainder of this document we will use the term approximation to mean nontrivial
approximation.
In a block cipher we can consider the correlation (LP) of an approximation for a fixed
key. We define a hull:

Definition 4.1. A hull (v, u) is the combination of the approximations(v, u) for all
keys. TheELP of a hull (v, u) is the average of the LP values of of the approximations
(v, u) over all keys.

The average correlation of a hull gives no indication about the complexity of a linear
attack. Therefore, we only talk about the ELP of a hull.



20 Joan Daemen and Vincent Rijmen

4.2 Correlation of a vector Boolean function approximation

We start with a result on the imbalance of an approximation(v, u).

Theorem 4.2. The imbalanceImb(v, u) of ann-bit to m-bit vector Boolean function
approximation has the following distribution:

Pr(Imb(v, u) = z) = 2−2n

(
2n

2n−1 + z

)
.

Proof. We start by computing the number of vector Boolean functions for which an
approximation(v, u) has imbalancez. For a given Boolean functionf , the number of
n-bit to m-bit vector Boolean functionsα that satisfy

vTa + uTα(a) = f(a)

is independent of the choice off and is equal to2m2n−1
. So the number of vector

Boolean functions that satisfyImb(v, u) = z is equal to2m2n−1
times the number of

Boolean functionsf(a) with imbalancez. Dividing by the total number ofn-bit to
m-bit vector Boolean functions results in the given distribution for the imbalance.

Corollary 4.3. For n ≥ 5, the result of Theorem 4.2 can be approximated by [5, 8]:

Pr(Imb(v, u) = z) ≈ Z
( z

2(n−2)/2

)
,

for z an integer and 0 otherwise.

For the correlation this yieldsC(v, u) = 2−n+1Imb(v, u), henceµ(C) = 0 andσ(C) =
2−n/2.
Approximating the discrete distribution given in Theorem 4.2 by a continuous density
function, we can derive from it the mean and variance of the LP.

Corollary 4.4. The LP of ann-bit to m-bit vector Boolean function approximation
with n ≥ 5 has meanµ(LP) = 2−n and varianceσ2(LP) = 2× 2−2n.

Proof. SinceLP(v, u) = C2(v, u), we haveµ(LP) = σ2(C) andσ2(LP ) = µ(C4) −
(µ(LP))2. Both expressions can be approximated using the normal approximation
given in Corollary 4.3 [12].

4.3 Correlation of a permutation approximation

We first derive the distribution of the imbalance of ann-bit vector Boolean permutation
approximation. This distribution was already given in [18] but the proof was missing
due to page limit restrictions.
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Lemma 4.5([18]). The imbalanceImb(v, u) of an n-bit permutation approximation
has the following distribution:

Pr(Imb(v, u) = 2x) =

(
2n−1

2n−2+x

)2

(
2n

2n−1

) .

Proof. We start by computing the fraction of permutations for which an approximation
(v, u) has imbalanceImb(v, u) = z. Consider the Boolean functiong defined by

g(a) = uTα(a). (4.3)

Clearly,g(a) is an output parity ofα. Sinceα is a permutation,g(a) is balanced. Its
definition table contains2n−1 zeroes and2n−1 ones.
A vector Boolean permutation for which one output parity has been fixed to a function
g can be constructed as follows. Complement the output parity with an(n − 1)-bit
permutation for the part of the definition table withg(a) = 0 and an(n− 1)-bit permu-
tation for the part of the definition table withg(a) = 1. It follows that the number of
such vector Boolean permutations is independent from the particular functiong(a) and
only depends on the dimensionn. Hence the fraction of vector Boolean permutations
that satisfyImb(v, u) = z is equal to the number of balanced Boolean functionsg that
satisfy

Imb(g(a) + vTa) = z , (4.4)

divided by the total number of balanced Boolean functions.
We compute now the number of balanced Boolean functions that satisfy (4.4). Partition
the definition table ofg(a) in two halves:D0 for which vTa = 0 andD1 for which
vTa = 1. The total imbalance ofg(a)+vTa is given by the imbalance ofg(a) restricted
to D0 (calledx) minus the imbalance ofg(a) restricted toD1 (calledy). As g(a) is
balanced, we havex + y = 0 and soy = −x. The imbalance ofg(a) + vTa is hence
given by2x. It follows that in a vector Boolean permutation all approximations have
an even imbalance.
The number of balanced Boolean functionsg(a) for a given value ofx is:

(
2n−1

2n−2 + x

)(
2n−1

2n−2 − x

)
=

(
2n−1

2n−2 + x

)2

. (4.5)

If we divide this by the total number of balanced Boolean functions, we obtain the
probability distribution of the imbalance.

In [18], it is proven that the number of approximations with correlation equal to 0, tends
to zero whenn grows. Additionally, some upper bounds are derived on the maximum
correlation amplitude over all approximations of a permutation. The distributions for
correlations and maximum LP values we derive in the remainder of this section and
following sections, confirm these results.

Lemma 4.6. The density function of the imbalanceImb(v, u) of ann-bit permutation
approximation withn ≥ 5 has a normal shape with mean0 and variance2n−2. The
discrete distribution hasε = 2.
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Proof. We start with the expression of Lemma 4.5. If2n−1 is large, we have:

(
2n−1

2n−2 + x

)
≈ 22n−1

Z
( x

2(n−3)/2

)
, (4.6)

and (
2n

2n−1

)
≈ 22n 2−(n−2)/2

√
2π

. (4.7)

Working this out yields:

Pr(Imb(v, u) = 2x) ≈ Z
( x

2(n−4)/2

)
. (4.8)

Substitutingx by z/2 gives the desired distribution.

Theorem 4.7. The density function of the correlation of ann-bit permutation approx-
imation withn ≥ 5 has a normal shape with mean 0 and variance2−n.

This follows immediately from Lemma 4.6. The same holds for a transformation ap-
proximation. Both distributions differ in the fact thatε = 21−n for transformations
while ε = 22−n for permutations.

4.4 ELP of hulls

The distribution of the ELP of a hull is the same as the distribution of the EDP of a
block cipher differential.

Theorem 4.8. The density function of the ELP of a hull has a normal shape with mean
2−n and standard deviation2−n2(1−h)/2.

Proof. The fixed-key LP of a hull has mean2−n and standard deviation2
1
2−n (Corol-

lary 4.4). Application of the central limit theorem results in the given distribution.

As in the case for EDP of block cipher differentials, the ELP of hulls stays very close
to its mean value2−1, while this is not the case for the LP.

5 Maximum cardinality, EDP, ELP and LP

In [17, 6] bounds have been proven for the maximum DP over permutations. In this
section, we derive the shape of the distribution of the maximum cardinality, the EDP,
the ELP and the LP for Boolean vector functions and block ciphers.
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5.1 Distribution of maxima

We now derive an expression for the cumulative distribution of the maximum of a very
large set of variables with identical distributions, that decrease exponentially for large
x. We model the cumulative distribution of these variables as:

D(x) = 1− e−f(x) . (5.1)

with f(x) a function that increases in a sub-exponential way. Let the number of vari-
ables be denoted by2y and letDmax(x) denote the cumulative distribution of their
maximum. We know from order statistics [5, 13] that the cumulative distribution of
the maximum of a number of independent variables is the product of the cumulative
distributions of these variables. Hence we have:

Dmax(x) = D(x)2
y

= (1− e−f(x))2
y ≈ e−2ye−f(x)

= e−eln(2)y−f(x)
. (5.2)

Forx a continuous variablex, let p be the solution forx in f(x) = ln(2)y and letw be
1 divided by the derivative off(x) in p. We approximate the functionln(2)y− f(x) by
a linear function around the point where its value is 0:

Dmax(x) ≈ e−e
p−x

w . (5.3)

This distribution has been well studied in probability theory and is known as theex-
treme valuedistribution, Fisher-Tippett distribution or log-Weibull distribution [5, 11].
The corresponding densityPmax(x) is depicted in Figure 1. Its peak is inp and its
width is proportional tow. This distribution hasµ(X) = p + wγ with γ ≈ 0.58 and
σ(X) = π√

6
w ≈ 1.3w. Clearly, the validity of (5.3) depends on the quality of the linear

approximation off(x) around(p, 0).

5.2 Maximum cardinality

We can now apply this to the maximum cardinality of a large set of vector Boolean
function differentials because their cardinalities have identical distributions. However,
they are not independent variables. An important relation between them is:

∑

b

N(a, b) = 2n−1, ∀a. (5.4)

Moreover, whenα is a permutation, (5.4) also holds when summing overa and keeping
b constant. Assuming independence allows us to apply the results of Section 5.1. The
experimental data that we present in Figure 2 confirm that this assumptions is justified.

Assumption 5.1. The joint distributions of a set of cardinalitiesN(ai, bi) can be ap-
proximated by assuming that the cardinalities are statistically independent.

Pr(N(a1, b1) = N1, N(a2, b2) = N2, . . . )

≈ Pr(N(a1, b1) = N1)× Pr(N(a2, b2) = N2)× . . .
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Figure 1: Extreme value distribution withp = 0 andw = 1.



Probability Distributions of Correlation and Differentials 25

The cumulative distribution of the cardinality of a differential is given by:

D(x) = 1− e−f(x) = Pr(N(a, b) ≤ x) . (5.5)

For vector Boolean function differentials, the approximate distribution of the maximum
cardinality with a given input difference is given by (5.2) withy = m, and for the
maximum overall cardinality by (5.2) withy = m + n. The distributions are also valid
for vector Boolean permutations, withn = m, approximating2n − 1 by 2n.
If we consider in a block cipher the maximum over all keys of the fixed-key cardinality
of a differential(a, b), then the independence of the variables holds. Hence (5.2) ap-
plies, withy = h. Using Assumption 5.1, we obtain for the maximum cardinality over
all keys and differentials (5.2) withy = 2n + h.
Theorem 3.5 implies that the cardinality of a permutation differential has a distribution
that is close to a Poisson distribution withλ = 1/2.
We now derive the functionf(x) corresponding with a Poisson distribution. For the
cumulative distribution of a variable with the Poisson distribution with givenλ we have

D(x) =
x−1∑

i=0

Poisson(i;λ) = 1−
∑

i≥x

Poisson(i; λ) . (5.6)

Forx À λ, this can be closely approximated by [5]:

D(x) ≈ 1− (1 +
λ

x
)Poisson(x; λ) ≈ 1− Poisson(x; λ) = 1− e−λ λx

x!
. (5.7)

If we use the Stirling approximation for the factorial [5, 14], we obtain the following
expression forf(x):

f(x) ≈ 1
2

ln(2π) + λ + x ln(x)− (1 + ln(λ))x +
1
2
ln(x) . (5.8)

Combined with Equation (5.2), this gives an expression for the distribution of the max-
imum cardinality over2y differentials. If we consider the maximum over all differen-
tials (a, b) of a Boolean permutation with givena we havey = n. For the maximum
over all differentials we havey = 2n and for the maximum over all differentials and
all keys of a block cipher, we havey = 2n + h. The Poisson distribution is discrete in
nature, so this approximation is only valid for integer values ofx. For the time being,
we make abstraction of this and compute the parametersp andw as ifx is a continuous
variable.

ln(2)y =
1
2

ln(2π) + λ + p ln(p)− (ln(λ) + 1)p +
1
2

ln(p) , (5.9)

or equivalently:

p =
ln(2)y − 1

2 ln(2πp)− λ

ln( p
λ )− 1

, (5.10)

which can be solved iteratively. The derivative off(x) is given by:

ln(
x

λ
) +

1
2x

. (5.11)
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Figure 2: Experimental and theoretical distributions of maximum cardinalityt =
maxa,b N(a, b) in 8-bit and 10-bit permutations.

Filling in p and usingp À λ, we obtain:

w ≈ 1
ln( p

λ )
. (5.12)

It follows that if p is much larger thanλ, the standard deviation becomes smaller than
1. Since the distribution of the maximum is discrete, this small value of the standard
deviation means that the distribution is concentrated at the two integer values nearp.
To verify our approximations, we have randomly generated a large number of permu-
tations ranging from 4 to 10 bits and computed the distribution of the maximum cardi-
nality. Starting from 5 bits the typical shape of the extreme value distribution becomes
apparent. Figure 2 gives the distributions for 8-bit and 10-bit permutations obtained
from our experiments (exp.) and the corresponding extreme value distributions (EVD)
with peak and width values given by equations (5.10) and (5.11). The figure illustrates
that around the peak the extreme value approximations match the experimental data
quite closely. The divergence between the extreme value distribution and the experi-
ments for larger cardinality values, due to the nonlinearity of equation (5.8) becomes
less important asn grows.
Table 1 gives the approximated probability distributions for the maximum cardinality
over all permutation differentials forn = 64, 128 and256. The values in the table
illustrate that the distributions are very narrow. The probability is only large in a single,
or two successive values ofx.
Table 2 lists the peak values of the distributions for permutations with typical dimen-
sions that we obtain using these approximations. Table 3 lists the peak values of this
distribution for typical block cipher dimensions.
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Table 1: Distribution oft = maxa,b N(a, b) for n-bit permutations, using equations
(5.2) and (5.8) withy = 2n.

n = 64 n = 128 n = 256
t Pr t Pr t Pr

26 3.0× 10−62 47 1.8× 10−9 83 8.0× 10−56

27 0.080 48 0.81 84 0.47
28 0.88 49 0.18 85 0.52
29 0.042 50 0.002 86 0.004
30 7.1× 10−4 51 2.0× 10−5 87 2.5× 10−5

31 1.2× 10−5 52 1.9× 10−7 88 1.4× 10−7

32 1.8× 10−7 53 1.8× 10−9 89 7.9× 10−10

33 2.7× 10−9 54 1.7× 10−11 90 4.4× 10−12

34 4.0× 10−11 55 1.5× 10−13 91 2.4× 10−14

Table 2: Peak value of the maximum cardinality, using equation (5.10) withy = n and
y = 2n.

n p(maxa N) p(maxa,b N) n p(maxa N) p(maxa,b N)
8 3.59 5.95 64 16.60 28.23

12 4.82 8.00 96 22.61 38.75
16 5.95 9.99 128 28.23 48.66
24 8.00 13.37 192 38.75 67.30
32 9.99 16.60 256 48.66 84.94
48 13.37 22.61 384 67.30 118.33

Table 3: Peak values for the maximum of the fixed-key cardinality over all keys and
differentials, using equation (5.10) withy = 2n + h

n h p(maxk,a,b N [k]) h p(maxk,a,b N [k])
64 56 37.48 128 48.66
96 96 53.44 192 67.30

128 128 67.30 256 84.94
192 128 84.94 256 101.89
256 192 110.17 256 118.33
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5.3 Maximum EDP and ELP

Theorem 3.7 states that the density function of the EDP of a block cipher differential
has a normal shape. Theorem 4.8 does the same for the ELP of a hull. Hence, we apply
the results from Section 5.1 to variables with a normal distribution.
Let us first consider the easier case of a variablex with a standard normal distribution.
We have:

D(x) =
∫ x

−∞
Z (u)du . (5.13)

This function is closely related to the error function (erf), and can for largex be closely
approximated by [5, 10]:

D(x) ≈ 1− 1
x

Z (x) = 1− 1
x
√

2π
e
−x2

2 . (5.14)

From this we can derive the following expression forf(x):

f(x) = − ln
(

1
x

Z (x)
)

=
1
2
(ln(2π) + x2) + ln(x) . (5.15)

The parameterps (subscripts for standard) is the solution of

ps =
√

2 ln(2)y − ln(2π)− 2 ln(ps) , (5.16)

which can be solved forp iteratively, ignoring the rightmost term in the first iteration.
The derivative off(x) is given by:

x +
1
x

, (5.17)

hence

ws =
ps

ps
2 + 1

≈ 1
ps

. (5.18)

If y > 30, which is always the case in block ciphers, we obtain that the maximum has
an extreme value distribution withps ≈ 1.18

√
y andws ≈ 1/(1.18

√
y). We can find the

values ofp andw for any normal distribution with meanµ(x) and standard deviationσ
by substitutingx by x−µ(x)

σ . This gives for the EDP and the ELP:

p = µ(x) + σps ≈ 2−n
(
1 + 1.18

√
y 2(1−h)/2

)
, (5.19)

w = σws ≈ 2−n 1
1.18

√
y

2(1−h)/2. (5.20)

5.4 Maximum LP

If we accept Assumption 5.2, we can apply the results from Section 5.1.
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Assumption 5.2. The joint distributions of a set of LP valuesLP(vi, ui) can be ap-
proximated by assuming that the LP values are statistically independent.

Pr(LP(v1, u1) = LP1, LP(v2, u2) = LP2, . . . )

≈ Pr(LP(v1, u1) = LP1)× Pr(LP(v2, u2) = LP2)× . . .

We start again with the easier case ofz = x2 andx a variable with the standard normal
distribution. We have:

D(z) =
∫ √

z

−√z

Z (u)du = 2
∫ √

z

−∞
Z (u)du− 1 . (5.21)

Using (5.14), this gives:

D(z) ≈ 1−
√

2
πz

e
−z
2 , (5.22)

yielding

f(z) =
1
2

(
ln(

π

2
) + z + ln(z)

)
. (5.23)

ps is the solution of:
ps = 2 ln(2)y − ln(

π

2
)− ln(ps) . (5.24)

The derivative off(z) is given by:

1
2

(
1 +

1
z

)
. (5.25)

As the functionf(z) around(ps, f(ps)) only differs from a linear function by a loga-
rithmic term, the approximation (5.3) is in this case particularly good. For large values
of y, the maximum has an extreme value distribution withps ≈ 1.38y − ln(1.38y) and
ws ≈ 2.
We can find the values ofp andw for any normal distribution with mean 0 and standard
deviationσ by substitutingx by x

σ . This gives for the LP:

p = σ2ps ≈ (1.38y − ln(1.38y))2−n , (5.26)

w = σ2ws ≈ 2× 2−n . (5.27)

This results in mean≈ 2−n(1.38y− ln(1.38y)+1) and standard deviation≈ 2.6×2−n.
Figure 3 gives distributions of the maximum LP for 8-bit and 10-bit permutations,
scaled by a factor28, respectively210. It shows the distributions obtained from our
experiments (exp.) and the corresponding extreme value distributions (EVD) with peak
and width values given by equations (5.24) and (5.25). The figure illustrates that the
extreme value approximations match the experimental distributions quite closely in
shape but that they slightly underestimate the maximum LP. This can be explained by
the fact that equation (5.21) is based on the continuous normal approximation of the
discrete distribution of the LP and that no continuity correction is performed. The
figure shows that the deviation becomes smaller asn grows as the distance between the
possible LP values shrinks. Table 4 lists the peak values of the maximum fixed-key LP
for some typical block cipher dimensions.



30 Joan Daemen and Vincent Rijmen

������

������

������

�����	

�����


������

������

�� �� 
� 
� 	� 	� �� �� ��

�

�

��
���� �������� �������� �	
������

Figure 3: Experimental and theoretical distributions of maximum LPt =
2n maxa,b LP(a, b) in 8 and 10-bit permutations.

Table 4: Peak values of the maximum fixed-key LP for some typical block cipher
dimensions, using equation (5.24) withy = 2n + h

n h p(maxk,v,u LP[k]) h p(maxk,v,u LP[k])
64 56 249× 2−64 128 349× 2−64

96 96 393× 2−96 192 526× 2−96

128 128 526× 2−128 256 703× 2−128

192 128 703× 2−192 256 880× 2−192

256 192 969× 2−256 256 1057× 2−256
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5.5 Example

If we apply the results of this section to 128-bit block ciphers with 128-bit keys, we see
that the mean of the maximum EDP over all differentials (and ELP over all hulls) is
about2−128(1 + 2−59) while for any given key, the distribution of the maximum DP is
narrowly centered around96×2−128 and that of the maximum LP around350×2−128.

6 Other difference operations

The bit-wise XOR operation is by far the most common operation used in differential
cryptanalysis of block ciphers, but in principle one can choose another group operation
for conducting attacks, such as modular integer addition and multiplication. The most
characteristic feature of the XOR operation is the fact that all elements have order 2.
For other group operations, this is not the case. Our analysis on the cardinality can
be extended to other group operations, by taking into account the following observa-
tions.

1. The order of the elements in pairs becomes important. The number of ordered pairs
with a differencea equals2n rather than2n−1. The distribution of the cardinality
N(a, b) over alln-bit to m-bit vector Boolean functions becomes:

Pr (N(a, b) = i) =
(
2−m

)i (
1− 2−m

)2n−i
(

2n

i

)
. (6.1)

All numerical approximations of the distribution of the cardinality can be adapted by
replacing2n−1 by 2n. In order to approximate the distribution of the maximum cardi-
nality over all differentials with a givena, we can again invoke Assumption 5.1.

2. Changing the order of the elements in a pair corresponds to changing the sign in the
difference. Hence

N(a, b) = N(−a,−b),∀a, b. (6.2)

When we approximate the distribution of the maximum cardinality over all differen-
tials, then we have (at most)2m+n−1 independent variables instead of2m+n.

7 Conclusions

We conclude that while the distribution of the maximum EDP or ELP over a block
cipher is centered extremely close to the mean value2−n, the distribution of themaxi-
mumDP and LP are significant up to a multiple of2−n.
In this paper, we have derived approximations for the probability distributions of a
number of important parameters over all vector Boolean functions, permutations and
block ciphers of given dimensions. For most of these parameters, this is the first time
that expressions have been obtained for their distributions. We have shown that their
distributions can be approximated by distributions are well-studied in the field of prob-
ability theory such as the normal, Poisson and extreme value distributions. Our exper-
imental verifications suggest that our approximations are very good. We showed that
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the distributions of fixed-key DP and LP values and EDP and ELP values are quite
different.
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A Probability distributions

In this appendix we mention a number of probability distributions that we refer to in
the body of the paper. For a more detailed treatment we refer to specialized textbooks
such as [5] and [7].

A.1 Binomial distribution

The binomial distribution is a discrete distribution with parametersp and n and is
defined as follows:

Pr(X = i) =
(

n

i

)
pi(1− p)n−i for 0 ≤ i ≤ n . (A.1)

The mean value of this distribution equalsnp, and the variance equalsnp(1− p).

A.2 Poisson distribution

The Poisson distribution is a discrete distribution with parameterλ and is defined as
follows:

Pr(X = i) =
e−λλi

i!
= Poisson(i; λ) . (A.2)

The mean value and the variance of this distribution are equal toλ. It is well known
that a binomial distribution with smallp can be closely approximated by a Poisson
distribution withλ = np.

A.3 Normal distribution

A normal distribution is a continuous distribution. For meanµ(X) and varianceσ2 it
has the following density:

PX(x) =
1

σ
√

2π
e−

(x−µ(X))2

2σ2 = Z

(
x− µ(X)

σ

)
. (A.3)

If µ(X) is 0 andσ = 1, we speak of the standard normal distribution. It is well known
that a binomial distribution with largen can be closely approximated by a normal
distribution with meanµ(X) = np and varianceσ2 = np(1− p).

Received 12 January, 2007; revised 13 January, 2007

Author informations

Joan Daemen, STMicroelectronics, Belgium.
Email: Joan.Daemen@st.com

Vincent Rijmen, Graz University of Technology, Austria.
Email: Vincent.Rijmen@iaik.tugraz.at


