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Alex Biryukov and Dmitry Khovratovich presented related-key attacks on AES and reduced-round 
versions of AES. The most impressive of these were presented at Asiacrypt 2009: related-key attacks 
against the full AES-256 and AES-192. We discuss the applicability of these attacks and related-key 
attacks in general. We model the access of the attacker to the key in the form of key access schemes. 
Related-key attacks should only be considered with respect to sound key access schemes. We show 
that defining a sound key access scheme in which the related-key attacks against AES-256 and AES-
192 can be conducted, is possible, but contrived. 
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1. INTRODUCTION 

 Since the start of the process to select the Advanced Encryption Standard (AES), the block cipher 
Rijndael, which later became the AES, has been scrutinized extensively for security weaknesses. The initial 
cryptanalytic results can be grouped into three categories. The first category contains attacks variants that 
were weakened by reducing the number of rounds [0]. The second category contains observations on 
mathematical properties of sub-components of the AES, which don’t lead to a cryptanalytic attack [0]. The 
third category consists of side-channel attacks, which target deficiencies in hardware or software 
implementations [0]. 
 In 2009, the first cryptanalytic results on the full AES were published [0, 0]. These results have been 
obtained in the related-key security model. Although related-key attacks on block ciphers have been 
described in the literature [0], the security model isn’t stable yet. A scenario where the adversary can query 
the block cipher under related keys, or even multiple keys, inevitably leads to security erosion [0]. A good 
view on the best possible security that can be achieved in such a scenario, is still lacking. In this paper, we 
recall some basic facts about related key attacks, give a concise description of the related-round-key attack 
described in [0], and describe the problems we see with this attack model. 
 Note that in 2011 a paper on biclique cryptanalysis of AES was presented, which doesn’t require a 
related-key scenario [0]. We don’t consider biclique cryptanalysis in this paper. 

2. NOTATIONS AND DEFINITIONS 

2.1. Block cipher security 

 An n -bit block cipher B  is a family of permutations on the set of n -bit strings. We denote by kB  the 
permutation of the family B  indexed by the key k . 
 The security of a block cipher, or any other cryptographic primitive, can be defined in different ways. 
One frequently used approach is to study how well the block cipher B  behaves compared to some well-
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defined idealized abstraction. An example in this category is pseudo-random-permutation security, where the 
abstraction is the set of all permutations on the set of n -bit strings [0], here denoted by Π . We denote by β  
a permutation randomly selected from Π . Let a  be a randomly selected value in }{0,1 . A distinguisher for 
B  is an algorithm that can submit two types of queries. Firstly, it can submit any n -bit input x  and receives 
in return the values ( ) ( ) ( )1kaB x a x+ − β  and ( ) ( ) ( )1 ka B x a x− + β . Secondly, it can submit any n -bit 
output y  and receives in return the values ( ) ( ) ( )1 11kaB y a y− −+ − β  and ( ) ( ) ( )1 11 ka B y a y− −− + β . Note 
that the distinguisher doesn’t get the values ,a k , nor does it have any information on β  other than what it 
obtains through the queries. The advantage of the distinguisher is the expected value (over all choices of 

, ,a k β ) of the probability that it outputs the correct value of a , minus one half. Sometimes, the minimum 
number of queries required by any distinguisher in order to have a significant advantage, is used as a 
measure of the security of the cipher. Sometimes, the number of computations to be performed by the 
distinguisher is taken into account as well. A shortcoming of this definition for security is that it doesn’t take 
into account related-key attacks, which are currently a topic of active research.  
 The security of a cryptographic primitive F  that uses a block cipher as a building element, can be 
proven in the ideal-cipher model [0]. In such a security proof, one measures how easy it is to distinguish 
between two idealised abstractions. On the one hand, we have Φ , the idealized abstraction of F . On the 
other hand, we have FΠ , the hybrid construction that is formed by taking the real construction F  but 
replacing the block cipher building block by Π , the idealised abstraction of the block cipher. The ideal-
cipher security of F against generic attacks is proven by showing that any distinguisher for FΠ  leads to a 
distinguisher for B . One can argue that any property that is present in a larger (or smaller) fraction of the 
permutations of the block cipher B  than in the permutations of the abstraction Π , has to be considered as a 
weakness, because it may be used to construct an algorithm that distinguishes FΠ  from F . 
 Both security notions have the problem that their reference points exist only as mathematical 
abstractions. All the block ciphers that are currently in use, share the property that they have a compact 
description, because this is necessary to be implementable in hardware or software. For realistic values of n , 
only a negligible fraction of the permutations in Π  (or primitives in FΠ ) have a compact description. In the 
case of ideal-cipher security, this property can be used to define constructions that are secure when Π  is 
used, but insecure when Π  is replaced by any block cipher [0,0].  

2.2. Related-key security 

 In related-key security, the adversary can submit queries, which contain as before an input x  or an 
output y  for the block cipher or the permutation. Secondly, the adversary can specify for each query a 
function G , which needs to be applied to the secret key k  before it is used to select a permutation from the 
block cipher. In the oldest examples of related-key attacks, the functions G  are affine functions: xor-ing the 
secret key with a constant chosen by the adversary [0].  
 The key access scheme (KAS) of a related-key attack defines the relations between the keys under 
which the adversary can query the block cipher. A KAS consists of a set of functions Γ  and a set of domains 
α . The adversary is allowed the query the block cipher under all keys l  for which there is a function iG  in 

Γ  and a constant ja  in a domain jA  in α  such that ( ),i jl G k a= . Following [0], in the ideal system each 

choice of iG  and ja  randomly selects a permutation from Π . 
 Some key access schemes lead to properties in block ciphers, which may at first sight appear to be 
weaknesses in the examined block cipher, but on closer inspection don’t lead to a distinguisher with a 
nonzero advantage. For example, consider the KAS containing two sets of functions ( )1 , j jG k a k a= ⊕  and 

( )2 , j jG k a k a= + , where ja  can be any valid key. It can easily be verified that for any block cipher B , if 

the least significant bit of k  equals 0 then for all x : 
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( ) ( )1 2,1 ,1( ) ( ).G k G kB x B x=  (1)

On the other hand, if the least significant bit of k  equals 1, then for most block ciphers Eq. (1) will hold for 
a very low fraction of the inputs x . By repeating this set of queries for 2, 4,8,...ja = , the adversary can 
recover the secret key k . However, this key recovery “attack” doesn’t lead to a distinguisher with nonzero 
advantage, because the property also holds when the block cipher is replaced by Π . 
 A more subtle characteristic of related-key security follows from the following time/data-trade-off. If 
an adversary can obtain for an arbitrary input x the values 

1 2
( ), ( ), ..., ( ),

dk k kB x B x B x  then an exhaustive key 

search attack can be accelerated with a factor d . By setting ( ),j jk G k a=  for 1, 2,...,j d= , we can convert 

this result to the related-key scenario [0]. Hence all KAS result in an erosion of security proportional to the 
number of functions and constants. 

2.3. The AES key schedule 

 For a full specification of the AES, we refer to [0, 0]. We recall here only the key schedule of AES-
256. The AES-256 encryption operation uses 15 128-bit round keys, here denoted by iK , where i  ranges 
from 0 to 14. The first two round keys are simple copies from the two halves of the key: 0 1 =  K K K . The 
13 remaining round keys are derived from the 256-bit key by the repeated application of a transformation 
that we denote here by ϕ . The transformation ϕ  takes as input two round keys 2 2 1,i i+K K  and outputs the 
two next round keys 2 2 2 3,i i+ +K K . It is defined as follows: 

( )

1 1,8 1

2 1 2

3 2 3

4 3 4

5 4 5

6 5 6

7 6 7

8 7 8

S

, 1, 2,3, 4
S

j j j

j j j

j j j

j j j
ij ij

j j j

j j j

j j j

j j j

b b a

b b a
b b a
b b a

a b j
b b a

b b a
b b a
b b a

+
  = ⊕ 

= ⊕
 = ⊕
 = ⊕   φ = ⇔ =     = ⊕  
 = ⊕
 = ⊕


= ⊕

, 

where S denotes the nonlinear byte substitution used in SubBytes. 
 We denote by iϕ  the map constructed by i  times iterating ϕ . Finally, we denote by 0.5ϕ  the map that 
outputs the matrix constructed by taking the leftmost four columns of the output of ϕ  and copying the 
rightmost four columns of the input, i.e.: 

( ) ( )2 2 1 2 2 2 3 0.5 2 2 1 2 2 2 1 .i i i i i i i i+ + + + + +ϕ = ⇒ φ =              K K K K K K K K  

3. THE BIRYUKOV-KHOVRATOVICH ATTACK 

 Biryukov and Khovratovich present attacks on AES-192 and on AES-256 in [0]. We briefly repeat here 
some key elements of the AES-256 attack, which has the lowest data complexity of the two attacks. The 
attack is based on an advanced variant of differential cryptanalysis [0]. In differential cryptanalysis, the 
adversary can query the block cipher with a number of plaintext pairs which have a difference chosen by the 
adversary. With a certain probability, encryption of a pair of plaintexts with a given input difference, leads to 
a pre-defined difference between the corresponding ciphertexts. When this happens, the adversary can 
determine or partially determine the secret key that was used. 
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 The attack by Biryukov and Khovratovich uses several extensions on the basic differential attack. The 
first extension is the use of quartets rather than pairs.  This extension is called the Boomerang attack [0]. The 
second extension is that the adversary can query the block cipher under different keys, which are related in a 
way specified by the adversary. This extension is called a related-key attack [0]. Biryukov and Khovratovich 
use a quartet of keys, where the relations between the keys are defined in terms of the round keys. Hence, we 
could call their attack a related-round-key attack. Let the quartet of round keys used in round i  be denoted 
by ( ), , ,i i i i

A B C DK K K K . The quartets are defined by four states 1 2 3 4, , , ,M M M M , which are used in the 
following four relations between round keys: 

2 2 2 2
1

00 00 00 00
00 01 00 01

,
00 00 00 00
00 00 00 00

A B C D

 
 
 ⊕ = ⊕ = =
 
 
  

K K K K M  

3 3 3 3
2

3e 00 3e 00
21 00 21 00

,
1f 00 1f 00
1f 00 1f 00

A B C D

 
 
 ⊕ = ⊕ = =
 
 
  

K K K K M  

7 7 7 7
3

3e 3e 3e 3e
21 21 21 21

,
1f 1f 1f 1f
1f 1f 1f 1f

A C B D

 
 
 ⊕ = ⊕ = =
 
 
  

K K K K M  

8 8 8 8
4

01 00 01 00
00 00 00 00

.
00 00 00 00
00 00 00 00

A C B D

 
 
 ⊕ = ⊕ = =
 
 
  

K K K K M  

 Using the notation iϕ , 0.5ϕ  defined in the previous section, we can describe the relations between the 
four keys of a quartet more compactly as follows:  

( ) [ ]( ) ( ) [ ]( )1 1
1 2 1 2, ,B A D C

− −= ϕ ϕ ⊕ = ϕ φ ⊕K K M M K K M M  

( ) [ ]( ) ( ) [ ]( )3.5 3.5 3.5 3.5
3 4 3 4, .C A D B

− −= ϕ ϕ ⊕ = ϕ ϕ ⊕K K M M K K M M  

 A related-key differential attack on AES can perform better than a standard differential attack on AES 
because the differences introduced in the key will propagate to the round keys and cancel out differences in 
the intermediate results of the encryption process (with a significant success probability). In the related-
round-key attack by Biryukov and Khovratovich increases the success probability of a related-key attack by 
directly imposing the desired differences on the round keys, thereby making a part of the attack deterministic 
instead of probabilistic. The attack requires the en- or decryption of 299.5 chosen plain- or ciphertexts, has an 
additional computational complexity of 299.5 and requires a memory of 277 128-bit blocks. 

4. DEFINING THE KEY ACCESS SCHEME 

 In order to determine whether the Biryukov-Khovratovich attack reduces the security of AES-256 
under our definition of security, we have to check the soundness of the key access scheme. Since Biryukov 
and Khovratovich didn’t specify a key access scheme, we will try to define here a sound key access scheme 
for their attack. 
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4.1. First attempt 

 As a first attempt to define a sound key access scheme, we propose the following function: 

( )( )( )1 2.5 3.5
1 2 2 1( , , )G − −= ϕ ϕ ϕ ⊕ ⊕K A A K A A , 

where the adversary can choose freely the states 1 2,A A . Indeed, in order to construct a quartet of keys as needed 
for the Biryukov-Khovratovich attack, one can set A =K K  and compute the 3 remaining keys as follows: 

[ ]( ) [ ]( ) [ ] [ ]( )1 2 3 4 1 2 3 4, , 0 , , 0, , , ,B A C A D AG G G= = =K K M M K K M M K K M M M M  

4.2. Problems with the first KAS 

 We will now show that the KAS defined in the first attempt, is not sound. We do this by showing that 
with this KAS, one can recover the key of any block cipher. Let ,a b  be two values in GF(256) such that 

( ) ( )( ) 7Pr 2S x a S x b −⊕ = ⊕ ≥ . In other words, let ( ),a b  be a differential with differential probability at 
least 2-7 over the AES S-box. Such differentials are known [0]. Define 4 states 2 3 4, , , ,1D D D D  as follows: 

3 2 3 4

00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00

, , , ,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

b b b b
a a a a a

       
       
       = = = =
       
       
              

D D D D  

Straightforward computation shows that [ ] [ ]( )1 2 3 4,D D D D  is a differential over 2.5ϕ  with differential 
probability at least 2-7, since only one S-box gets a non-zero input difference. It follows that for all keys K , 
the relation  

( ) [ ] [ ]( )1 2 3 4, , , ,G G= ⊕ ⊕K X Y K X D D Y D D  

holds for a fraction of 2-7 of the states ,X Y . Exploiting the fact that there are many good choices for ( ),a b , 
25 applications of the key access scheme suffice to create with high probability a collision for the key access 
scheme. As shown before, a collision in the key access scheme is trivially detectable by the adversary, 
allowing it to recover one byte of the round key. The attack can be repeated 19 times with slightly different 
choices for the states 2 3 4, , , ,1D D D D  allowing the adversary to recover in total 160 bits of key material 
using only 500 queries. 

Observe that the attack doesn’t depend on the underlying encryption block cipher. It only depends on 
the properties of the key access scheme. The adversary described in this section, using the key access scheme 
defined in the previous section, can recover the key of any block cipher. Hence, this key access scheme is not 
sound.  

4.3. Second attempt 

In order to make the key access scheme sound, we have to modify it as follows. We forbid the use of 
values 1 2,A A  resulting in a differential over 2.5ϕ  with nonzero probability, while at the same time not 
excluding the values that are needed for the Biryukov-Khovratovich attack. Although this restriction restores 
the soundness of the KAS, it is specially designed for this attack to work and can be called contrived. 

5. CONCLUSION 

Due to the complex relations required between the related keys, the Biryukov-Khovratovich attacks is 
generally considered to be of academic rather than practical interest. In this paper, we show that even the 
academic interest is very limited due to the fact that any sound key access scheme for which it works is contrived. 
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The actual relevance of related-key attacks could well be that they can be a step up to conventional 
cryptanalysis because they provide insight in the limitations of key schedules and their interaction with the 
data path. As such, it is very likely that the insights of the Biryukov-Khovratovich attack have contributed to 
the more recent biclique attacks [0].  

As mentioned in the paper, the usage of key access schemes in protocols leads to a degradation of 
security and avoiding them does not necessarily lead to less efficient protocols. One may wonder whether 
security against related-key attacks should be a design requirement. One may design block ciphers targeting 
PRP security only. This relaxation of requirements may lead to lighter key schedule and higher key agility. 
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